Building better blood vessels could advance tissue engineering

April 4, 2013
Engineered blood vessels built with lung fibroblasts as supporting structure cells were leaky, as this image depicts. Red represents the tracer dye the researchers injected into the bloodstream of mice. The tracer dye does is not contained in vessels. The researchers captured this image 14 days after the experiment began. Credit: Stephanie Grainger.

One of the major obstacles to growing new organs—replacement hearts, lungs and kidneys—is the difficulty researchers face in building blood vessels that keep the tissues alive, but new findings from the University of Michigan could help overcome this roadblock.

"It's not just enough to make a piece of tissue that functions like your desired target," said Andrew Putnam, U-M associate professor of . "If you don't nourish it with blood by vascularizing it, it's only going to be as big as the head of a pen.

"But we need a heart that's this big," he added, holding up his fist.

More immediately, doctors and researchers believe figuring out how to grow working blood vessels might offer treatments for diseases that affect the such as diabetes. Perhaps the right drug or injection could save patients' feet from .

Putnam and his colleagues have revealed why one of the leading approaches to building blood vessels isn't consistently working: It's making leaky tubes. They also demonstrated how could solve this problem. A paper on the findings is published online in Tissue Engineering Part A, and will appear in a forthcoming print edition.

Today, are taking two main approaches to growing new capillaries, the smallest blood vessels and those responsible for exchanging oxygen, carbon dioxide and nutrients between blood and muscles or organs.

One group of researchers is developing that would signal existing vessels to branch into new tributaries. These compounds—generally protein —mimic how cancerous recruit blood vessels.

The other group, which includes the U-M team, is using a cell-based method. This technique involves injecting cells within a scaffolding carrier near the spot where you want new capillaries to materialize. In Putnam's approach, they deliver , which make up the vessel lining and supporting cells. Their scaffolding carrier is fibrin, a protein in the human body that helps blood clot.

Engineered blood vessels built with adult stem cells from fat were more robust and better able to hold blood inside them. Red represents the tracer dye the researchers injected into the bloodstream of mice. The researchers captured this image 14 days after the experiment began. Credit: Stephanie Grainger.

"The cells know what to do," Putnam said. "You can take these things and mix them and put them in an animal. Literally, it's as easy as a simple injection and over a few days, they spontaneously form new vessels and the animals' own vasculature connects to them."

But it turns out these vessels don't always thrive. The U-M team aimed to figure out why. In reading previously published findings, Putnam noticed that researchers used "a mishmash of support cells," and the field had paid little attention to which ones work best. So that's where he and his colleagues focused.

In their experiments, they mixed three recipes of blood vessel starter solutions, each with a different commonly used supporting cell type: lung fibroblasts, adult stem cells from fat and adult stem cells from bone marrow. They also made a version with no supporting cells at all. They injected each solution under the skin of mice, and allowed the new blood vessels to form over a period of two weeks. At various points in time, they injected a tracer dye into the animals' circulation to help them see how well the engineered capillaries held blood, and whether they were connected to the animals' existing vessel networks.

The researchers found that the solution with no support cells and the one with the lung fibroblasts produced immature, misshapen human capillaries that leaked. They could tell because the tracer dye pooled in the tissue around the new vessels. On the other hand, the solutions with both types of adult stem cells gave rise to robust human capillaries that kept blood and dye inside them.

The paper notes that one popular method biomedical engineers use to check the success of their efforts—counting blood vessels—might not be an ideal measure. The adult stem cell solutions produced fewer blood vessels than the others, in one case less than half. But the vessels they did build were stronger. And upon further analysis, the researchers found evidence that the adult stem cells may be able to differentiate into the kind of mature, smooth muscle cells that support larger blood vessels.

"The adult stem cells from fat and bone marrow both work equally well," Putnam said. "If we want to use this clinically in five to 10 years, I think it's crucial for the field to focus on a support cell that actually has some stem cell characteristics."

Down the road, Putnam envisions that doctors could get these support cells from individual patients themselves—either from their bone marrow or fat—and then inject them near the site where the new are needed.

Explore further: Adult stem cells from liposuction used to create blood vessels in the lab

More information: online.liebertpub.com/doi/pdf/ … 89/ten.tea.2012.0281

Related Stories

Adult stem cells from liposuction used to create blood vessels in the lab

July 25, 2012
Adult stem cells extracted during liposuction can be used to grow healthy new small-diameter blood vessels for use in heart bypass surgery and other procedures, according to new research presented at the American Heart Association's ...

Researchers discover new blood vessel-generating cell with therapeutic potential

October 16, 2012
Researchers at the University of Helsinki believe they have discovered stem cells that play a decisive role in the growth of new blood vessels. If researchers learn to isolate and efficiently produce these stem cells found ...

Steering stem cells to become two different building blocks for new blood vessels

December 20, 2012
(Medical Xpress)—Growing new blood vessels in the lab is a tough challenge, but a Johns Hopkins engineering team has solved a major stumbling block: how to prod stem cells to become two different types of tissue that are ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.