Breast cancer researchers find new drug target companion prognostic test for hormone therapy resistance

April 1, 2013

A team of international cancer researchers led by Dr. Mathieu Lupien at the Princess Margaret Cancer Centre, University Health Network, has identified the signalling pathway that is over-activated in estrogen receptor (ER)-positive breast cancer cells that are resistant to hormone therapies such as tamoxifen, aromatase inhibitors or fulvestrant.

Resistance to hormone therapy is reported in almost half of ER-positive and no cure is currently available. The fact that the pathway, called Notch, is a creates hope for a new therapy.

The findings, published online today in PNAS, the Proceedings of the National Academy of Sciences of the United States of America, "provide a new against hormone therapy-resistant breast cancers and a companion test to identify tumours that would become resistant" says Dr. Lupien, a scientist at the Ontario Cancer Institute, the research arm of the cancer centre, and an Assistant Professor in the Department of Medial Biophysics, University of Toronto. He specializes in epigenetics of hormone-dependent cancers – the study of non-genetic determinants of cellular identity that can also be altered to initiate or modify disease.

"In studying the epigenetics of hormone therapy resistance, we discovered that behave like a chameleon. Indeed, as the chameleon changes its skin colour to camouflage itself and evade predators," says Dr. Lupien, "breast cancer cells change the appearance of their DNA through epigenetics to evade, in this case, hormone therapy." In so doing, hormone therapy-resistant breast cancer cells highlight regions of their DNA related to the .

At the molecular level, the research team characterized the epigenetic appearances of the DNA of drug-resistant and drug-responsive breast cancer cells. The team discovered that the plays the predominant role in drug-resistant breast cancer cells even if cells remain positive for ER.

"This is a highly promising discovery that could rapidly translate in the clinic. Drugs against the Notch pathway are available." says Dr. Lupien. The key will be to test the efficacy of these drugs against hormone therapy resistance in breast cancer.

Explore further: Novel technique switches triple-negative breast cancer cells to hormone-receptor positive cells

Related Stories

Novel technique switches triple-negative breast cancer cells to hormone-receptor positive cells

November 1, 2011
Within many hormone-receptor positive breast cancers lives a subpopulation of receptor-negative cells – knock down the hormone-receptor positive cells with anti-estrogen drugs and you may inadvertently promote tumor ...

Possible therapy for tamoxifen resistant breast cancer identified

August 30, 2012
(Medical Xpress)—A study by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) has discovered how tamoxifen-resistant ...

New finding gives clues for overcoming tamoxifen-resistant breast cancer

November 2, 2012
(Medical Xpress)—A University of Cincinnati (UC) cancer biology team reports breakthrough findings about specific cellular mechanisms that may help overcome endocrine (hormone) therapy-resistance in patients with estrogen-positive ...

PBX1 identified as a new pioneer factor underlying progression in breast cancer

November 17, 2011
The presence of a new pioneer factor, known as PBX1, can guide the response to estrogen in breast cancer cells according to researchers at Dartmouth-Hitchcock Norris Cotton Cancer Center in results published on November 17 ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.