Newly discovered blood protein solves 60-year-old riddle

April 8, 2013, Lund University
Newly discovered blood protein solves 60-year-old riddle

Researchers at Lund University in Sweden have discovered a new protein that controls the presence of the Vel blood group antigen on our red blood cells. The discovery makes it possible to use simple DNA testing to find blood donors for patients who lack the Vel antigen and need a blood transfusion.

Because there has not previously been any simple way to find these rare donors, there is a of Vel-negative . The largest known accumulation of this type of blood donor is found in the Swedish county of Västerbotten, which exports Vel-negative blood all over the world.

The Vel blood group was first described in 1952, when American doctors discovered a patient who developed serious complications from blood transfusions from normal donors. The patient lacked a previously unknown blood group antigen, which was named Vel. It has long been known that around one in 1 000 people lack the Vel antigen, but the molecule that carries it has been a mystery.

Lund University researchers Jill Storry, Magnus Jöud, Björn Nilsson and Martin L. Olsson and their colleagues have now discovered that the presence of the Vel antigen on our red blood cells is controlled by a previously unknown protein (SMIM1) that is not carried by those who lack the Vel antigen. The discovery has been published in the renowned journal Nature Genetics.

The findings have major clinical significance, according to Professor Martin L. Olsson, a consultant in .

"Until now there has not been a simple way to find these and there is therefore a major shortage of Vel-negative blood. Now we can identify these donors with simple DNA tests. From having previously only had access to one such donor in our region, there are now three and further screening is being carried out", says Professor Olsson.

Two research groups with completely different focuses have collaborated to solve the 60-year-old riddle, explains Reader Björn Nilsson, who has led the work together with Reader Jill Storry and Professor Olsson.

"Many researchers have tried to find the Vel molecule. We realised that it might be possible to find it using advanced DNA analysis techniques. Our idea proved to be correct and we found that the Vel blood group is inactivated in exactly the same way for all Vel-negative individuals", says Björn Nilsson.

Another interesting aspect is that the new protein is unlike any previously known protein and appears to be present on the red of other species as well.

"Interestingly, the new protein, SMIM1, is reminiscent of other molecules used by malaria parasites to infect humans. It is therefore possible that SMIM1 could be a long-sought malaria receptor on the ", says Jill Storry.

Explore further: Baffling blood problem explained: 60-year-old health mystery solved

More information: 'Homozygosity for a null allele of SMIM1 defines the Vel-negative blood group phenotype' www.nature.com/ng/journal/vaop … nt/full/ng.2600.html

Related Stories

Baffling blood problem explained: 60-year-old health mystery solved

March 20, 2013
In the early 1950's, a 66-year-old woman, sick with colon cancer, received a blood transfusion. Then, unexpectedly, she suffered a severe rejection of the transfused blood. Reporting on her case, the French medical journal ...

Final chapter to 60-year-old blood group mystery

April 7, 2013
Researchers have solved a 60-year-old mystery by identifying a gene that can cause rejection, kidney failure and even death in some blood transfusion patients. In this study, published in Nature Genetics online 7 April, they ...

Study finds protein in platelets fight malaria but only for some people

December 7, 2012
(Medical Xpress)—Researchers in Australia have found that a protein in platelets found naturally in blood has a protective effect against malaria. In their paper published in the journal Science, the team describes how ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.