Scientists identify potential target to reduce progression of metastases

April 15, 2013

A team of researchers at the IRCM, led by Dr. Jean-François Côté, made an important discovery in breast cancer, which will published online this week by the scientific journal Proceedings of the National Academy of Sciences (PNAS). The Montréal scientists identified the DOCK1 protein as a potential target to reduce the progression of metastases in patients suffering from breast cancer, the most common type of cancer in women.

Dr. Côté's laboratory is interested in metastasis, which is the spread of cancer from an organ (or part of an organ) to another. Nearly 90 per cent of deaths are attributable to metastasis, thus explaining the importance of understanding the underlying cellular and of this harmful process.

"Despite important breakthroughs in , few mechanisms are known to explain the spread of metastases," says Dr. Côté, Director of the Cytoskeletal Organization and research unit at the IRCM. "We are looking to identify the proteins that regulate the metastatic process so that new agents can be developed and combined with current treatments."

Two major subtypes, + and Basal, have a tendency to be metastatic and recurrent, and are ultimately associated to a poor survival rate. Research at the IRCM was conducted on the HER2+ type (Human Epidermal growth factor Receptor 2), which represents approximately 25 per cent of breast cancer cases. HER2 positive tumours tend to develop and spread more quickly than other types of tumours.

"By studying a genetic mouse model with HER2+ breast cancer, we identified the protein DOCK1 as an important regulator of metastasis," explains Mélanie Laurin, doctoral student in Dr. Côté's laboratory and first author of the study. "When we eliminated this protein in mice, our results showed a significant decrease in lung metastases. We also discovered that the DOCK1 protein contributes to the growth of tumours."

"To show the correlation between the expression of DOCK1 and breast cancer prognosis, we performed an analysis of several databases of patient genic," adds Dr. Benjamin Haibe-Kains, researcher at the IRCM who collaborated with Dr. Côté's team. "We did indeed discover that high levels of DOCK1 in HER2+ or Basal breast cancer patients are associated with a lower prognosis, or recurrence of the disease."

"Our work defined a new molecule required for the progression of breast cancer to the metastatic stage and allowed us to identify new markers that could become potential targets to stop the progression of metastases," concludes Dr. Côté. "We also showed that a chemical inhibitor of the DOCK1 protein, developed by Dr. Yoshinori Fukui, our collaborator in Japan, can stop the migration of cancerous cells. These results could eventually lead to the development of drugs that would limit the progression of metastatic breast cancer and could thereby improve patient prognosis."

"We are proud to fund this research," comments Melody Enguix, Scientific Communication Advisor at the Canadian Cancer Society. "The findings are another important step toward understanding how we can stop metastases, which are the cause of most breast cancer deaths."

Explore further: Trastuzumab and chemotherapy improved survival in HER2-postive breast and brain cancer patients

More information: Rac-specific guanine nucleotide exchange factor DOCK1 is a critical regulator of HER2-mediated breast cancer metastasis, www.pnas.org/cgi/doi/10.1073/pnas.1213050110

Related Stories

Trastuzumab and chemotherapy improved survival in HER2-postive breast and brain cancer patients

July 18, 2011
The use of trastuzumab, chemotherapy and surgery among women with HER2-positive metastatic breast cancer significantly improved survival from the time central nervous system metastases were diagnosed.

New target identified to stop the spread of breast cancer

November 10, 2011
A new potential target to slow breast cancer tumor progression and metastasis has been identified by a team of researchers led by Dr. Richard Kremer from the Research Institute of the McGill University Health Centre (RI-MUHC). ...

Breast cancer recurrence defined by hormone receptor status

October 1, 2012
Human epidermal growth factor (HER2) positive breast cancers are often treated with the same therapy regardless of hormone receptor status. New research published in BioMed Central's open access journal Breast Cancer Research ...

Study provides new drug target for Her-2 related breast cancer

January 22, 2013
Research led by Dr. Suresh Alahari, the Fred Brazda Professor of Biochemistry and Molecular Biology at LSU Health Sciences Center New Orleans and its Stanley S. Scott Cancer Center, details exactly how the Her2 cancer gene ...

Recommended for you

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.