Blocking protein expression delays onset of multiple sclerosis in mice, study says

May 10, 2013 by Krista Conger, Stanford University Medical Center

(Medical Xpress)—Blocking the expression of just one protein in the brain delays the onset of paralysis in mice with a form of multiple sclerosis, say researchers at the School of Medicine.

Exactly why this happens is still unclear. It may be, in part, that blocking expression of the protein, SIRT1, enhances the production of cells that make the insulating myelin sheath necessary for the transmission of nerve signals. This myelin coating is damaged in such as multiple sclerosis and Guillain-Barre syndrome.

Although much more research is needed, the findings suggest that it may one day be possible to induce the brains of patients with myelin-associated diseases or injuries to heal themselves by selectively interfering with the activity of SIRT1.

"We are excited by the potential implications our study has on and injuries," said Anne Brunet, PhD, an associate professor of genetics. "It's intriguing because activating SIRT1 is typically considered to be beneficial for metabolism and health, but in this case, inactivating SIRT1 can provide protection against a demyelinating injury."

Brunet, who is also a member of the Stanford Cancer Institute, is the senior author of the research, which was published online May 5 in Nature Cell Biology. Postdoctoral scholar Victoria Rafalski, PhD, is the lead author of the study.

Blocking SIRT1 expression appears to work by promoting the development of in the brain into a type of cell called an oligodendrocyte precursor. These cells, in turn, become the mature oligodendrocytes that wrap the long arms of with myelin—a fatty material necessary to facilitate the transmission of the from one nerve cell to another. In humans, most myelination occurs during and adolescence.

Diseases such as multiple sclerosis wreak havoc in the by damaging this protective myelin coating and impeding communication between nerve cells.

Because SIRT1 is more highly expressed in the brains of mice with an inducible form of multiple sclerosis, Brunet and her colleagues wondered what role the protein might play in the generation or inhibition of oligodendrocytes. To find out, they created a laboratory mouse in which the gene for SIRT1 is selectively disrupted in neural when the mouse is injected with a drug called tamoxifen. This technique allows the researchers to effectively turn SIRT1 expression off at will in neural stem cells.

The researchers found that, over time, a subset of the nerve stem cells in which SIRT1 expression had been eliminated began to make proteins indicative of oligodendrocyte precursor cells and eventually began to look like typical . Growing the neural stem cells in culture yielded similar results; genetically engineered cells lacking active SIRT1 (or unmodified cells treated with a drug that specifically inhibits the activity of the SIRT1 protein) resulted in a marked increase in the proportion of cells expressing an oligodendrocyte-specific protein marker.

When normal mice and those with inhibited SIRT1 expression were injected with a compound that causes the demyelination of , the SIRT1-inhibited mice recovered more quickly. Furthermore, they were protected for a time from the paralysis that develops after the onset of the -like disorder.

"Our work suggests that SIRT1 may normally limit the proliferation of oligodendrocyte precursors and that it has to be inactivated to transiently increase the number of these myelinating cells," Brunet said.

To understand more about how SIRT1 works in the brain, the researchers identified a panel of genes that are more highly expressed when SIRT1 is absent. These genes included several involved in growth factor signaling, cell metabolism and protein production. One, called PDGFRalpha, activates a pair of signaling pathways within the cell. Blocking those pathways significantly inhibited the increase in oligodendrocyte precursor cells seen when SIRT1 is missing.

"Our study highlights the possibility of pharmacological manipulation of multiple nodes of the pathway to expand the population of oligodendrocyte precursors," said Brunet. "Approaches such as these could have important implications for regenerative medicine."

Explore further: Discovery of human genetic mutation could lead to new treatments for type 1 diabetes

Related Stories

Discovery of human genetic mutation could lead to new treatments for type 1 diabetes

March 5, 2013
In type 1 diabetes, the immune system destroys insulin-producing cells in the pancreas, but the precise cause has not been clear. A study published by Cell Press on March 5th in Cell Metabolism reveals that a single mutation ...

Researchers discover dynamic behavior of progenitor cells in brain

May 9, 2013
By monitoring the behavior of a class of cells in the brains of living mice, neuroscientists at Johns Hopkins discovered that these cells remain highly dynamic in the adult brain, where they transform into cells that insulate ...

Therapy targets leukemia stem cells

February 13, 2012
New research takes aim at stubborn cancer stem cells that are thought to be responsible for treatment resistance and relapse. The study, published by Cell Press in the February 14 issue of the journal Cancer Cell, provides ...

Regulatory enzyme overexpression may protect against neurodegeneration in Huntington's disease

December 18, 2011
Treatment that increases brain levels of an important regulatory enzyme may slow the loss of brain cells that characterizes Huntington's disease (HD) and other neurodegenerative disorders. In a report receiving advance online ...

Protein that boosts longevity may protect against diabetes

August 8, 2012
A protein that slows aging in mice and other animals also protects against the ravages of a high-fat diet, including diabetes, according to a new MIT study.

Recommended for you

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Functional engineered oesophagus could pave way for clinical trials 

October 18, 2018
The world's first functional oesophagus engineered from stem cells has been grown and successfully transplanted into mice, as part of a pioneering new study led by UCL.

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

New model suggests cuffless, non-invasive blood pressure monitoring possible using pulse waves

October 16, 2018
A large team of researchers from several institutions in China and the U.S. has developed a model that suggests it should be possible to create a cuffless, non-invasive blood pressure monitor based on measuring pulse waves. ...

Age-related increase in estrogen may cause common men's hernia

October 16, 2018
An age-related increase in estrogen may be the culprit behind inguinal hernias, a condition common among elderly men that often requires corrective surgery, according to a Northwestern Medicine study was published Oct. 15 ...

Income and wealth affect the mental health of Australians, study shows

October 16, 2018
Australians who have higher incomes and greater wealth are more likely to experience better mental health throughout their lives, new research led by the Bankwest Curtin Economics Centre has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.