Restoring appropriate movement to immune cells may save seriously burned patients

June 19, 2013

Advances in emergency medicine and trauma surgery have had a significant impact on survival of patients in the days immediately after major injuries, including burns. Patients who survive the immediate aftermath of their injuries now are at greatest risk from infections – particularly the overwhelming, life-threatening immune reaction known as sepsis – or from inflammation-induced multiorgan failure. Now, a device developed by Massachusetts General Hospital (MGH) investigators that measures the movement of key immune cells may help determine which patients are at greatest risk for complications, and a novel treatment that directly addresses the cause of such complications could prevent many associated deaths.

"One in every three patients with burn injuries that dies in an does so because of septic complications," says Daniel Irimia, MD, PhD, of the MGH Department of Surgery, corresponding author of a report in the June FASEB Journal. "In the days immediately after injury, called neutrophils can lose their ability to move to the site of an injury. In an animal model of burn injury, we found that death due to septic complications can be prevented by a treatment that restores the proper movement of neutrophils."

The most abundant type of white blood cell, neutrophils are part of the and the body's first line of defense against infections. Normally, neutrophils are drawn towards the site of a infection by from bacteria or injured cells. However, it has recently been discovered that – in patients with serious burn injuries – neutrophils' ability to follow these signals becomes impaired soon after the injury. Not only does that impairment reduce the availability of the cells to fight infection at the site of injury, but misguided neutrophils also can attack healthy tissue, contributing to . The current study was designed to analyze changes in the speed and direction of neutrophil movement after burn injury and to investigate whether recently identified molecules called resolvins, which normally act to terminate the inflammatory process after an infection has cleared, could also restore normal neutrophil motion after burns.

Using a microfluidic device that measures neutrophil movement developed at the MGH BioMEMS Resource Center, the investigators first confirmed that the ability of neutrophils from burn-injured rats to move towards a chemical signal of injury progressively deteriorates – in both speed and accuracy – as time passes. While cells from uninjured animals moved quickly and directly through a series of microchannels towards the injury signal, cells from blood samples taken 9 days after the injury became trapped in the device or reversed direction. The researchers then showed that application of resolvin D2 significantly improved the in vitro migratory ability of from burned animals.

Experiments in living rats revealed that treatment with resolvin D2 restored appropriate neutrophil motion, an effect that lasted at least two days after treatment ended. In addition, when burn-injured animals were subjected to a second sepsis-inducing injury, treatment with resolvin D2 significantly increased survival. For example, in a group of rats injected with a bacterial toxin nine days after a burn injury, all of those pre-treated with resolvin survived, while all untreated animals died.

"Our ability to measure neutrophil movement in great detail gave us the information we needed to develop the optimal dosage and duration of resolvin treatment for the burned rats. Our results also indicate that neutrophil motility could be a useful biomarker for the actual risk of septic complications in patients," says Irimia, an assistant professor of Surgery at Harvard Medical School who is also affiliated with Shriner's Hospital for Children. "Our experiments in the animal model suggest that a resolvin-based treatment could prevent those complications by restoring the body's own resources, allowing it to respond to secondary infections, which could save hundreds of patients with burns every year. "

Explore further: New discovery permits rapid diagnosis and treatment of sepsis

Related Stories

New discovery permits rapid diagnosis and treatment of sepsis

May 30, 2013
Despite numerous advances in treating infections and disease, effective treatments for sepsis remain elusive. A new discovery published in the June 2013 issue of The FASEB Journal not only could help health care providers ...

Rogue blood cells may contribute to post-surgery organ damage

June 26, 2011
A study from scientists at Queen Mary, University of London, sheds new light on why people who experience serious trauma or go through major surgery, can suffer organ damage in parts of the body which are seemingly unconnected ...

Traumatic injury sets off a 'genomic storm' in immune system pathways

December 7, 2011
Serious traumatic injuries, including major burns, set off a "genomic storm" in human immune cells, altering around 80 percent of the cells' normal gene expression patterns. In a report to appear in the December Journal of ...

A DNA-unraveling enzyme in neutrophils essential for deep vein thrombosis

May 31, 2013
(Medical Xpress)—It takes more than platelets, thrombin and fibrin to build a deep vein thrombosis (DVT). Increasingly, researchers are recognizing that neutrophils—cells better known for their role in immune defense—play ...

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.