Neuronal regeneration and the two-part design of nerves

June 4, 2013, University of Michigan
A neuron contains two sets of protrusions of different functions: dendrites (shown in green) receive signals from other neurons or sensory stimuli, whereas the axons (shown in purple) pass signals to other neurons or muscles. Such a two-part design serves as a basis for the functioning neural networks inside of our brains, in a way that is similar to diodes in electric circuits. Credit: Xin Wang

Researchers at the University of Michigan have evidence that a single gene controls both halves of nerve cells, and their research demonstrates the need to consider that design in the development of new treatments for regeneration of nerve cells.

A paper published online in PLOS Biology by U-M Life Sciences Institute faculty member Bing Ye and colleagues shows that manipulating genes of the fruit fly Drosophila to promote the growth of one part of the neuron simultaneously stunts the growth of the other part.

Understanding this bimodal nature of is important for researchers developing therapies for injury, neurodegeneration and other nervous system diseases, Ye said.

Nerve cells look strikingly like trees, with a crown of "branches" converging at a "trunk." The branches, called dendrites, input information from other neurons into the nerve cell. The trunk, or axon, transmits the signal to the next cell.

"If you want to regenerate an axon to repair an injury, you have to take care of the other end, too," said Ye, assistant professor in the Department of Cell and Developmental Biology at the U-M Medical School.

The separation of the nerve cell into these two parts is so fundamental to neuroscience that it's known as the "neuron doctrine," but how exactly neurons create, maintain and regulate these two separate parts and functions is still largely unknown.

While the body is growing, the grows rapidly. But nerve cells don't divide and replicate like other cells in the body (instead, a specific type of stem cell creates them). Adult nerve cells appear to no longer have the drive to grow, so the loss of neurons due to injury or can be permanent.

Ye's paper highlights the bimodal nature of neurons by explaining how a that promotes axon growth surprisingly has the opposite effect of impeding dendrite growth of the same cell.

In the quest to understand the fundamentals of nerve cell growth in order to stimulate regrowth after injury, scientists have identified the genes responsible for axon growth and were able to induce dramatic growth of the long "trunk" of the cell, but less attention has been given to dendrites.

There are technical reasons that studying axons is easier than studying dendrites: The bundle of axons in a nerve is easier to track under the microscope, but to get an image of dendrites would require labeling single neurons.

Ye's lab circumvented that obstacle by using Drosophila as a model. Using this simple model of the nervous system, the scientists were able to reliably label both axons and dendrites of single neurons and see what happened to nerve cells with various mutations of genes that are shared between the flies and humans.

One of the genes shared by Drosophila and people is the one that makes a protein called Dual Lucine Zipper Kinase, or DLK. As described previously by other groups, DLK is a product of the gene responsible for axon growth. Cells with more of the protein had very long axons, and those without the gene or protein had no regeneration after nerve injury. The DLK kinase seemed a promising target for therapies to regenerate .

However, Ye's lab found that the kinase had the opposite effect on the dendrites: Lots of DLK leads to diminished dendrites.

"This in vivo evidence of bimodal control of neuronal growth calls attention to the need to look at the other side of a neuron in terms of developing new therapies," Ye said. "If we use this kinase, DLK, as a drug target for , we'll have to figure out a way to block its effect on dendrites."

Explore further: Researchers identify protein required to regrow injured nerves in limbs

Related Stories

Researchers identify protein required to regrow injured nerves in limbs

June 20, 2012
A protein required to regrow injured peripheral nerves has been identified by researchers at Washington University School of Medicine in St. Louis.

Making axons branch and grow to help nerve regeneration after injury

March 22, 2013
(Medical Xpress)—One molecule makes nerve cells grow longer. Another one makes them grow branches. These new experimental manipulations have taken researchers a step closer to understanding how nerve cells are repaired ...

Glial cells assist in the repair of injured nerves

January 28, 2013
When a nerve is damaged, glial cells produce the protein neuregulin1 and thereby promote the regeneration of nerve tissue.

Nerve pathway for combating axon injury and stress may hold benefits for individuals with neurodegenerative disorders

June 27, 2012
(Medical Xpress) -- Researchers from the Huck Institutes' Center for Cellular Dynamics — led by Center director Melissa Rolls — have found that a neuroprotective pathway initiated in response to injured or stressed ...

Gene required for nerve regeneration identified

November 1, 2012
A gene that is associated with regeneration of injured nerve cells has been identified by scientists at Penn State University and Duke University. The team, led by Melissa Rolls, an assistant professor of biochemistry and ...

Recommended for you

Separate brain systems cooperate during learning, study finds

February 21, 2018
A new study by Brown University researchers shows that two different brain systems work cooperatively as people learn.

How the brain tells our limbs apart

February 21, 2018
Legs and arms perform very different functions. Our legs are responsible primarily for repetitive locomotion, like walking and running. Our arms and hands, by contrast, must be able to execute many highly specialized jobs—picking ...

Cognitive benefits of 'young blood' linked to brain protein in mice

February 21, 2018
Loss of an enzyme that modifies gene activity to promote brain regeneration may be partly responsible for age-related cognitive decline, according to new research in laboratory mice by UC San Francisco scientists, who also ...

Therapeutic antibodies protected nerve–muscle connections in a mouse model of Lou Gehrig's disease

February 20, 2018
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, causes lethal respiratory paralysis within several years of diagnosis. There are no effective treatments to slow or halt this devastating disease. Mouse ...

Brain immune system is key to recovery from motor neuron degeneration

February 20, 2018
The selective demise of motor neurons is the hallmark of Lou Gehrig's disease, also known as amyotrophic lateral sclerosis (ALS). Yet neurologists have suspected there are other types of brain cells involved in the progression ...

Brain liquefaction after stroke is toxic to surviving brain: study

February 20, 2018
Scientists have known for years that the brain liquefies after a stroke. If cut off from blood and oxygen for a long enough period, a portion of the brain will die, slowly morphing from a hard, rubbery substance into liquid ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.