Researchers discover new mechanism for human gene expression

July 3, 2013

In a study that could change the way scientists view the process of protein production in humans, University of Chicago researchers have found a single gene that encodes two separate proteins from the same sequence of messenger RNA.

Published online July 3 in Cell, their finding elucidates a previously unknown mechanism in human gene expression and opens the door for new therapeutic strategies against a thus-far untreatable neurological disease.

"This is the first example of a mechanism in a higher organism in which one gene creates two proteins from the same mRNA transcript, simultaneously," said Christopher Gomez, MD, PHD, professor and chairman of the Department of Neurology at the University of Chicago, who led the study. "It represents a in our understanding of how genes ultimately encode proteins."

The contains a similar number of protein-coding genes as the (roughly 20,000). This disparity between and gene count partially can be explained by the fact that individual genes can encode multiple protein variants via the production of different sequences of messenger RNA (mRNA)—short, mass-produced copies of genetic code that guide the creation of myriad .

Gomez and his team, which included first author Xiaofei Du, MD, discovered a new layer of complexity in this process of gene expression as they studied spinocerebellar ataxia type-6 (SCA6), a neurodegenerative disease that causes patients to slowly lose coordination of their muscles and eventually their ability to speak and stand. Human genetic studies identified its cause as a mutation in CACNA1A—a gene that encodes a calcium channel protein important for —resulting in extra copies of the amino acid glutamine.

However, although the gene, mutation and dysfunction are known, attempts to find the of the disease proved inconclusive. Calcium channel proteins with the mutation still seemed to function normally.

Suspecting another factor at play, Gomez and his team instead focused on ?1ACT, a poorly understood, free-floating fragment of the CACNA1A calcium known to express extra copies of glutamine in SCA6 cells. The researchers first looked at its origin and found that, to their surprise, ?1ACT was generated from the same mRNA sequence as the CACNA1A .

For the first time, they had evidence of a human gene that coded one strand of mRNA that coded two separate, structurally distinct proteins. This occurred due to the presence of a special sequence in the mRNA known as an internal ribosomal entry site (IRES). Normally found at the beginning of an mRNA sequence, this IRES site sat in the middle, creating a second location for ribosomes, the cellular machines that read mRNA, to begin the process of .

Looking at function, Gomez and his team found that normal ?1ACT acted as a transcription factor and enhanced the growth of specific brain cells. Importantly, mutated ?1ACT appeared to be toxic to nerve cells in a petri dish, and caused SCA6-like symptoms in an animal model.

The team hopes to discover other examples of human genes with similar IRES sites to better understand the implications of this new class of "bifunctional" genes on our basic biology. For now, they are focused on leveraging their findings toward helping SCA6 patients and already are working on ways to silence mutated ?1ACT.

"We discovered this genetic phenomenon in the pursuit of a disease cause and, in finding it, immediately have a potential strategy for developing preclinical tools to treat that disease," Gomez said. "If we can target the IRES and inhibit production of this mutant form of ?1ACT in SCA6, we may be able to stop the progression of the disease."

Explore further: Researchers develop powerful new technique to study protein function

Related Stories

Researchers develop powerful new technique to study protein function

June 19, 2013
In the cover story for the journal Genetics this month, neurobiologist Dan Chase and colleagues at the University of Massachusetts Amherst describe a new experimental technique they developed that will allow scientists to ...

Researchers find mutation causing neurodegeneration

January 19, 2012
A Jackson Laboratory research team led by Professor and Howard Hughes Medical Investigator Susan Ackerman, Ph.D., has discovered a defect in the RNA splicing process in neurons that may contribute to neurological disease.

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.