New research identifies a microRNA that drives both cancer onset and metastasis

July 3, 2013, Beth Israel Deaconess Medical Center

A mere 25 years ago, noncoding RNAs were considered nothing more than "background noise" in the overall genomic landscape. Now, two new studies reveal that one of these tiny noncoding molecules – microRNA-22 – plays an outsized role in two types of cancer.

Reported online today in the journals Cell and Cell Stem Cell, the two papers demonstrate in mouse models that miR-22 drives both the onset and spread of breast cancer, as well as the onset of . The findings, led by investigators at Beth Israel Deaconess Medical Center (BIDMC), further suggest that inhibition of miR-22 through a "decoy" method offers a novel for treating hematological malignancies.

"This is the first time that a microRNA has been shown to drive both cancer initiation and metastasis in a ," explains senior author Pier Paolo Pandolfi, MD, PhD, Scientific Director of the Cancer Center at BIDMC and the George Reisman Professor of Medicine at Harvard Medical School. "It's amazing that, by itself, this one little microRNA can trigger cancer in two different organs, perhaps in many more, and in the case of breast cancer, can also promote metastasis."

Although many advances have been made in identifying the of some cancers, it has become apparent that changes in the primary DNA sequence alone cannot explain the many steps that are necessary to turn a normal cell into a cancer cell. As these new papers confirm, – which occur apart from changes in the underlying DNA sequences and include DNA methylation and histone modification – have now been recognized as playing integral roles in cancer.

"Our discovery is exciting for several reasons," says Pandolfi. "Mechanistically, we have revealed one way in which microRNAs can fundamentally reconfigure the way that DNA is read. Our findings show that miR-22 triggers an epigenetic 're-wiring,' if you will, which represses the expression of certain genes as well as other selected microRNAs. Based on these studies, we now know that one miRNA can communicate and repress other miRNAs epigenetically. In this particular case, we have also learned that miR-22 does so by silencing a family of enzymes called TET proteins, which act as tumor suppressors."

In addition, the scientific team, led by first author Su Jung Song, PhD, a postdoctoral fellow in the Pandolfi laboratory, discovered that overexpression of miR-22 also triggers metastasis – the spread of cancer from a primary site to other organs, in this case, from breast tissue to the lungs.

Metastasis remains one of the most complex and challenging problems of oncology. Recent studies have demonstrated that as tumors progress, genetic and epigenetic mechanisms may lead to the emergence of a self-renewing metastatic cancer stem cell or -initiating cell, which can enter the blood stream and seed a secondary tumor in a distinct organ.

"We showed that by promoting epithelial to mesenchymal transition [EMT], a process by which gain properties that enable them to become both more motile and more invasive, miR-22 promotes aggressive metastatic disease in ," explains Song, who describes this course of events in the paper published in Cell. Specifically, she adds, miR-22 silences the anti-metastatic miR-200 through direct targeting of TET proteins, as shown in a mouse model.

But, notes Pandolfi, "While these findings are extremely novel, what makes this work even more exciting is its therapeutic implications."

As described in the team's second paper, in Cell Stem Cell, the new findings further identify miR-22 as an epigenetic modifier and key oncogenic determinant for the pathogenesis of myeolodysplastic syndrome (MDS) and leukemia in a mouse model of disease – thus identifying a novel therapeutic target for blood and breast malignancies.

"We already have ways to shut down microRNAs," explains Pandolfi. "We can go in with very tiny decoy molecules that block the function of miR-22, and thereby reverse its oncogenic function. " As he further explains, these new papers demonstrate that a locked nucleic acid (LNA)-based therapeutic targeting of miR-22 may represent an effective strategy for TET2 reactivation as a treatment option for a number of diseases, including MDS, leukemia and other metastatic cancers.

"This is not wishful thinking," adds Pandolfi. "The identification of this new oncogenic miRNA provides straightforward therapeutic opportunities because we can test the effects of its inhibitors right away."

Explore further: Researchers say one specific microrna promotes tumor growth and cancer spread

Related Stories

Researchers say one specific microrna promotes tumor growth and cancer spread

April 3, 2013
Researchers at Moffitt Cancer Center have determined that the overexpression of microRNA-155 (miR-155), a short, single strand of ribonucleic acid encoded by the miR-155 host gene, promotes the growth of blood vessels in ...

MicroRNA molecule may serve as biomarker, target for brain metastases in breast cancer patients

February 5, 2013
Researchers have identified two molecules that could potentially serve as biomarkers in predicting brain metastases in patients with breast cancer, according to data published in Cancer Research, a publication of the American ...

New agent might control breast-cancer growth and spread

April 22, 2013
A new study led by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) suggests that an unusual experimental ...

Researchers find possible key to regulation of ovarian cancer stem cells

September 27, 2012
(Medical Xpress)—Researchers at Moffitt Cancer Center have discovered that the micro ribonucleic acid miR-214 plays a critical role in regulating ovarian cancer stem cell properties. This knowledge, said the researchers, ...

Scientists reveal aggressive breast cancer's metastatic path

January 14, 2013
Scientists at Weill Cornell Medical College have discovered the molecular switch that allows aggressive triple negative breast cancer cells to grow the amoeba-like protrusions they need to crawl away from a primary tumor ...

Serum miR-21 putative biomarker for colorectal cancer

June 20, 2013
(HealthDay)—The oncogenic microRNA (miRNA) miR-21 is a potential biomarker for detection and prognosis of colorectal cancer (CRC), according to a study published in the June 19 issue of the Journal of the National Cancer ...

Recommended for you

Single-cell study in a childhood brain tumor affirms the importance of context

April 20, 2018
In defining the cellular context of diffuse midline gliomas, researchers find the cells fueling their growth and suggest a potential approach to treating them: forcing their cells to be more mature.

Aggressive breast cancer already has resistant tumour cells prior to chemotherapy

April 20, 2018
Difficult to treat and aggressive "triple-negative" breast cancer is chemoresistant even before chemotherapy begins, a new study by researchers from Karolinska Institutet and the University of Texas MD Anderson Cancer Center ...

Discovery adds to evidence that some children are predisposed to develop leukemia

April 19, 2018
St. Jude Children's Research Hospital researchers have made a discovery that expands the list of genes to include when screening individuals for possible increased susceptibility to childhood leukemia. The finding is reported ...

Scientists identify 170 potential lung cancer drug targets using unique cellular library

April 19, 2018
After testing more than 200,000 chemical compounds, UT Southwestern's Simmons Cancer Center researchers have identified 170 chemicals that are potential candidates for development into drug therapies for lung cancer.

Chip-based blood test for multiple myeloma could make bone biopsies a relic of the past

April 19, 2018
The diagnosis and treatment of multiple myeloma, a cancer affecting plasma cells, traditionally forces patients to suffer through a painful bone biopsy. During that procedure, doctors insert a bone-biopsy needle through an ...

Study may explain why some triple-negative breast cancers are resistant to chemotherapy

April 19, 2018
Triple-negative breast cancer (TNBC) is an aggressive form of the disease accounting for 12 to 18 percent of breast cancers. It is a scary diagnosis, and even though chemotherapy can be effective as standard-of-care, many ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.