Prior flu exposure dictates your future immunity, allowing for new, rationally developed regiments

July 15, 2013

A team of scientists, led by researchers at The Wistar Institute, has determined that it might be possible to stimulate the immune system against multiple strains of influenza virus by sequentially vaccinating individuals with distinct influenza strains isolated over the last century.

Their results also suggest that world health experts might need to re-evaluate standard tests used for surveillance of novel strains. Their findings are published in the Journal of Experimental Medicine, available online now.

According to the Wistar researchers, their analysis could lead to an alternative approach to creating a "universal" —a vaccine that would provide resistance to seasonal and strains over many years, negating the need for an annual .

"Influenza vaccines are very safe and provide good protection. However, we need to continuously update seasonal flu vaccines because influenza change over time," said Scott Hensley, Ph.D., an assistant professor at The Wistar Institute and corresponding author on the study. "Since are constantly changing, we all have unique pre-exposure histories that depend on when we were born and the specific types of viruses that circulated during our childhood."

Vaccines work by stimulating the immune system to produce antibody proteins against particles (called antigens) from an infectious agent, such as bacteria or a virus. The immune system saves the cells that produce effective antibodies, which then provide immunity against future attacks by the same or similar . Despite the availability of a vaccine, seasonal influenza typically kills 36,000 Americans, alone, and nearly a half million individuals around the world, in total.

Most current efforts to create universal vaccines hinge on the idea of generating antibodies against a portion of the virus that is relatively unchanged year-to-year.

"Our studies demonstrate that individuals that are infected sequentially with dramatically different influenza strains mount antibody responses against a conserved region of ," Hensley said. "Since we now know that pre-exposure events can influence vaccine responsiveness in a predictable way, we can begin to design vaccine regiments that preferentially elicit antibody responses against conserved regions of influenza virus."

The researchers began their current work by studying human antibody responses against the 2009 pandemic H1N1 virus. The 2009 strain is antigenically distinct from recently circulating seasonal H1N1 strains, and a distant relative of the virus that caused the devastating "Spanish Flu" of the early 20th century. The most effective antibodies are those that bind to a particular portion (or "epitope") of hemagglutinin (HA), a protein produced by the influenza virus.

According to Hensley, however, their chief insight occurred when his team hit the "sort" button on a spreadsheet document, thereby arranging all samples by age of the donor. Different aged people, they found, mount vastly different antibody responses to pandemic H1N1, depending on whether or not they were exposed to a seasonal H1N1 years earlier. "We can now accurately predict how individuals will respond to the pandemic H1N1 strain based on the year that they were born," Hensley said.

Their investigation also suggests that ferrets with no prior influenza exposure might not be the most reliable predictor of human immune responses. Anti-sera—or blood containing antibodies—created in these "naïve" ferrets are commonly used for influenza surveillance. The researchers found that naïve ferrets mount a response to an epitope in a decidedly different portion of HA than do most humans, but subsequently infecting these ferrets with other historical influenza strains can shift the antibody response toward the epitope that human antibodies recognize. This shift might also be replicable in humans through multiple infections or vaccinations, the researchers believe.

According to Hensley, one strategy would be to sequentially vaccinate children with antigenically distinct viral strains. "Babies are born with an immunological blank slate," Hensley said. "We may be able to strategically vaccinate our children with antigenically diverse to elicit antibodies against conserved viral epitopes."

Explore further: Novel approach for influenza vaccination shows promise in early animal testing

Related Stories

Novel approach for influenza vaccination shows promise in early animal testing

May 22, 2013
A new approach for immunizing against influenza elicited a more potent immune response and broader protection than the currently licensed seasonal influenza vaccines when tested in mice and ferrets. The vaccine concept, which ...

Two-pronged immune cell approach could lead to universal shot against flu

March 14, 2013
Seasonal epidemics of influenza result in nearly 36,000 deaths annually in the United States, according to the Centers for Disease Control. Current vaccines against the influenza virus elicit an antibody response specific ...

Study suggests potential hurdle to universal flu vaccine development may be overcome

August 15, 2012
In the quest for a universal influenza vaccine—one that elicits broadly neutralizing antibodies that can protect against most or all strains of flu virus—scientists have faced a sobering question: Does pre-existing ...

Prediction of seasonal flu strains improves chances of universal vaccine

March 12, 2013
(Medical Xpress)—Researchers have determined a way to predict and protect against new strains of the flu virus, in the hope of improving immunity against the disease.

Pandemic 2009 H1N1 vaccination produces antibodies against multiple flu strains

May 21, 2012
The pandemic 2009 H1N1 vaccine can generate antibodies in vaccinated individuals not only against the H1N1 virus, but also against other influenza virus strains including H5N1 and H3N2. This discovery adds an important new ...

Recommended for you

Genetic immune deficiency could hold key to severe childhood infections

July 18, 2017
A gene mutation making young children extremely vulnerable to common viruses may represent a new type of immunodeficiency, according to a University of Queensland researcher.

What are the best ways to diagnose and manage asthma?

July 18, 2017
What are the best ways to diagnose and manage asthma in adults? This can be tricky because asthma can stem from several causes and treatment often depends on what is triggering the asthma.

Large multi-ethnic study identifies many new genetic markers for lupus

July 17, 2017
Scientists from an international consortium have identified a large number of new genetic markers that predispose individuals to lupus.

Study finds molecular explanation for struggles of obese asthmatics

July 17, 2017
A large, bouquet-shaped molecule called surfactant protein A, or SP-A, may explain why obese asthma patients have harder-to-treat symptoms than their lean and overweight counterparts, according to a new study led by scientists ...

Team identifies potential cause for lupus

July 14, 2017
Leading rheumatologist and Feinstein Institute for Medical Research Professor Betty Diamond, MD, may have identified a protein as a cause for the adverse reaction of the immune system in patients suffering from lupus. A better ...

Immunosuppression underlies resistance to anti-angiogenic therapy

July 14, 2017
A Massachusetts General Hospital (MGH) research team has identified a novel mechanism behind resistance to angiogenesis inhibitors - drugs that fight cancer by suppressing the formation of new blood vessels. In their report ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.