Scientists to study novel mechanisms of epileptic seizures to identify targets for therapy

July 22, 2013

Ten percent of Americans experience a seizure in their lifetime, with three million diagnosed with epilepsy, a chronic neurological disorder. Anticonvulsant medications can mitigate the hyperactivity of neurons that leads to seizures, but not without severe side effects, including cognitive impairment.

Now, researchers Todd Fiacco, Ph.D., and Devin Binder, M.D., Ph.D., at the University of California, Riverside will spend the next five years studying the causes of neuronal hyperexcitability with the goal of developing more effective treatments for brain disorders like epilepsy. The researchers will share a National Institutes of Health (NIH) grant totaling more than $1.7 million awarded to them as co-principal investigators of the project.

Besides improving our understanding of how communicate with each other, the research has the potential to lead to treatments for and diseases such as epilepsy, stroke and Alzheimer's disease.

"We're very excited about the opportunity to work together on this project," said Binder, a clinician and an associate professor of biomedical sciences in the School of Medicine. "We've collaborated over the past two years, generating a lot of supporting data for this research."

As a , Binder has worked with a number of , an experience that led him to study animal models of seizures in his lab at UC Riverside.

"The patients I've worked with suffer terrible from ," he said. "Without new treatments, impaired cognition is the trade-off for preventing severe seizures."

Part of the problem is how researchers have traditionally thought of disorders like epilepsy. Aside from triggering seizures, the of neurons can lead to ; as a result, anticonvulsants are prescribed to reduce across the brain, which leads to side effects. The cause of the neuronal hyperexcitability is still unknown, but Fiacco and Binder are gathering evidence to suggest that it may involve expansive star-shaped glial cells found in the brain called astrocytes.

"A single astrocyte surrounds many thousands of synapses in the brain," said Fiacco, an assistant professor of cell biology and neuroscience. "By manipulating astrocytes, you have another tool for controlling neuronal activity."

This is exactly what Fiacco has been doing since arriving at UCR in 2008. In his lab, he exploits a process called "astrocytic swelling" to manipulate astrocytes.

Fiacco explained that in order to maintain a balanced osmolarity, astrocytes take up water via channels unique to them called aquaporin 4. This can lead to selective swelling of astrocytes during bouts of elevated neuronal activity. One result of this swelling is the release of neurotransmitters like glutamate through volume-regulated anion channels (VRACs) that are critical for cell volume regulation. Glutamate, being the most common excitatory neurotransmitter in the brain, will then bind to receptors on neurons and elevate neuronal activity. Being able to selectively manipulate astrocytes while recording neuronal activity is a key challenge in the NIH-funded project.

"Astrocytic swelling could be a novel target for antiepileptic treatment," Binder said. "Hypertonic saline treatment will shrink astrocytes and could be a quick and specific method for preventing massive seizure activity. Pharmacological agents could also be used to block VRACs from releasing glutamate. Thanks to Dr. Fiacco's work, we can quantify the effects of these treatments on isolated brain tissue in vitro."

In vitro work is critical for establishing grounds to test these treatments in vivo with live animals. That's where Binder's lab comes in. His work with mouse models of epilepsy will allow him to test the effects of manipulating astrocytic swelling on seizure thresholds.

"We also plan to measure astrocytic swelling before and during a seizure in vivo with modern imaging techniques like two-photon microscopy," he said. "That's where the strength of this project lies: being able to study the relationship of astrocytic swelling on neuronal excitability not only at the behavioral level in vivo, but also at the cellular level in vitro."

Both Binder and Fiacco agree that this collaboration never could have happened without UCR's Center for Glial Neuronal Interactions (CGNI), of which they are members.

"It's the center's monthly meetings that fostered our collaboration," Fiacco said.

Fiacco and Binder will be assisted by graduate students and laboratory technicians in the research project. Results will be presented at various venues including CGNI meetings, the annual CGNI research symposium at UCR, and national and international research conferences.

Explore further: New methods to explore astrocyte effects on brain function

Related Stories

New methods to explore astrocyte effects on brain function

April 29, 2013
A study in The Journal of General Physiology presents new methods to evaluate how astrocytes contribute to brain function, paving the way for future exploration of these important brain cells at unprecedented levels of detail.

Seizures late in life may be an early sign of Alzheimer's disease

July 8, 2013
Patients with epilepsy who had amnestic mild cognitive impairment (aMCI) or Alzheimer disease (AD) presented earlier with cognitive decline than patients who did not have epilepsy, according to a report published by JAMA ...

Researchers find that alcohol consumption damages brain's support cells

March 18, 2013
Alcohol consumption affects the brain in multiple ways, ranging from acute changes in behavior to permanent molecular and functional alterations. The general consensus is that in the brain, alcohol targets mainly neurons. ...

Discovery that some seizures arise in glial cells could offer new targets for epilepsy treatment

January 16, 2013
Epileptic seizures occur when neurons in the brain become excessively active. However, a new study from MIT neuroscientists suggests that some seizures may originate in non-neuronal cells known as glia, which were long believed ...

Astrocytes: More than just glue

August 7, 2012
Epileptic fits are like thunderstorms raging in the brain: Nerve cells excite each other in an uncontrolled way so that strong, rhythmic electrical discharges sweep over whole brain regions. In the wake of such a seizure, ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.