Researchers aim to use light—not electric jolts—to restore healthy heartbeats

August 28, 2013
In this illustration, the "optrode" at left delivers blue light to the heart via a fiber-optic tip. In the enlargement at right, a heart cell (large red oval) contains an implanted light-sensitive "opsin" protein (blue oval) that works alongside the heart's own proteins (yellow ovals). This teamwork allows the cell to convert light energy into an electric kick that triggers a healthy heartbeat. Credit: Patrick M. Boyle

When a beating heart slips into an irregular, life-threatening rhythm, the treatment is well known: deliver a burst of electric current from a pacemaker or defibrillator. But because the electricity itself can cause pain, tissue damage and other serious side-effects, a Johns Hopkins-led research team wants to replace these jolts with a kinder, gentler remedy: light.

In a paper published Aug. 28 in the online journal Nature Communications, five biomedical engineers from Johns Hopkins and Stony Brook universities described their plan to use biological lab data and an intricate computer model to devise a better way to heal ailing hearts. Other scientists are already using light-sensitive cells to control certain activities in the brain. The Johns Hopkins-Stony Brook researchers say they plan to give this technique a cardiac twist so that doctors in the near future will be able to use low-energy light to solve serious such as arrhythmia.

"Applying electricity to the has its drawbacks," said the project's supervisor, Natalia Trayanova, the Murray B. Sachs Professor of Biomedical Engineering at Johns Hopkins. "When we use a defibrillator, it's like blasting open a door because we don't have the key. It applies too much force and too little finesse. We want to control this treatment in a more intelligent way. We think it's possible to use light to reshape the behavior of the heart without blasting it."

To achieve this, Trayanova's team is diving into the field of optogenetics, which is only about a decade old. Pioneered by scientists at Stanford, optogenetics refers to the insertion of light-responsive proteins called opsins into cells. When exposed to light, these proteins become tiny portals within the , allowing a stream of —an electric charge—to pass through. Early researchers have begun using this tactic to control the bioelectric behavior of certain , forming a first step toward treating with light.

In the Nature Communications paper, the researchers reported that they had successfully tested this same technique on a heart—one that "beats" inside a computer. Trayanova has spent many years developing highly detailed computer models of the heart that can simulate cardiac behavior from the molecular and cellular levels all the way up to that of the heart as a whole. At Johns Hopkins, she directs the Computational Cardiology Lab within the Institute for Computational Medicine.

As detailed in the journal article, the Johns Hopkins computer model for treating the heart with light incorporates biological data from the Stony Brook lab of Emilia Entcheva, an associate professor of . The Stony Brook collaborators are working on techniques to make heart tissue light-sensitive by inserting opsins into some cells. They also will test how these cells respond when illuminated.

"Experiments from this lab generated the data we used to build our computer model for this project," Trayanova said. "As the Stony Brook lab generates new data, we will use it to refine our model."

In Trayanova's own lab, her team members will use this model to conduct virtual experiments. They will try to determine how to position and control the light-sensitive cells to help the heart maintain a healthy rhythm and pumping activity. They will also try to gauge how much light is needed to activate the healing process. The overall goal is to use the to push the research closer to the day when doctors can begin treating their heart patients with gentle light beams. The researchers say it could happen within a decade.

"The most promising thing about having a digital framework that is so accurate and reliable is that we can anticipate which experiments are really worth doing to move this technology along more quickly," said Patrick M. Boyle, a postdoctoral fellow in Trayanova's lab and lead author of the Nature Communications paper. "One of the great things about using light is that it can be directed at very specific areas. It also involves very little energy. In many cases, it's less harmful and more efficient than electricity."

After the technology is honed through the computer modeling tests, it could be incorporated into light-based pacemakers and defibrillators. It is interesting to note that it was a Johns Hopkins electrical engineering researcher, William B. Kouwenhoven, who developed the closed-chest electric cardiac , which has been used since was the 1950s to save lives.

Explore further: 'Virtual heart' precision-guides defibrillator placement in children with heart disease

More information: www.nature.com/ncomms/2013/130 … full/ncomms3370.html

Related Stories

'Virtual heart' precision-guides defibrillator placement in children with heart disease

August 21, 2013
The small size and abnormal anatomy of children born with heart defects often force doctors to place lifesaving defibrillators entirely outside the heart, rather than partly inside—a less-than-ideal solution to dangerous ...

Technique to stimulate heart cells may lead to light-controlled pacemakers

August 9, 2011
(Medical Xpress) -- A new technique that stimulates heart muscle cells with low-energy light raises the possibility of a future light-controlled pacemaker, researchers reported in Circulation: Arrhythmia & Electrophysiology, ...

New technique to stimulate heart muscle by light may lead to light-controlled pacemakers

August 22, 2011
By employing optogenetics, a new field that uses genetically altered cells to respond to light, and a tandem unit cell (TCU) strategy, researchers at Stony Brook University have demonstrated a way to control cell excitation ...

Instead of defibrillator's painful jolt, there may be a gentler way to prevent sudden death

September 28, 2011
Each year in the United States, more than 200,000 people have a cardiac defibrillator implanted in their chest to deliver a high-voltage shock to prevent sudden cardiac death from a life-threatening arrhythmia. While it's ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.