Capturing live tumor cells in the blood

August 8, 2013, American Institute of Physics

Tumor cells circulating within a patient's bloodstream can carry cancer from a primary tumor site to distant sites of the body, spreading the disease.

Now a team of researchers in China has developed a new microfluidic chip that can quickly and efficiently segregate and capture live (CTCs) from a patient's blood, with potential applications for cancer screenings and treatment assessments. The researchers describe their technique in the journal Biomicrofluidics, which is produced by AIP Publishing.

Many currently available devices for detecting CTCs in patients' blood are either too slow for clinical use or have other problems, such as a reduced ability to distinguish between the rare CTCs and more common and other non-tumor cells.

The new system captures more than 90 percent of the CTCs, which makes it highly efficient. Overall processing time has also been shortened, thanks in part to a step in which red blood cells are selectively lysed, or broken apart. Lysing the diminishes the tendency of blood to clog the system, a common problem that slows processing time in similar CTC filtering devices.

The ability to count live, individual CTCs in the bloodstream can help doctors determine the severity of a cancer, since CTC density in the blood is linked to the progression of the disease and patients' likelihood of survival. The new method could also improve "liquid biopsy" techniques, in which a small amount of blood is drawn as an alternative to conventional tissue biopsies of primary or .

In addition to potentially improving screening tests, the team believes their approach may someday help doctors control CTC-induced metastasis, which the researchers say can be far more lethal than the original tumor.

"Because our chip is able to capture viable CTCs, it creates opportunities for the development of new and efficient ," says co-author Ray Han, a professor at Peking University in Beijing. It also gives researchers a chance to realize what Han calls "the grandest dream of all: a technology capable of directly removing CTCs from the human bloodstream – a form of CTC dialysis."

Explore further: Detecting circulating tumor cells

More information: The article, "Spatially gradated segregation and recovery of circulating tumor cells from peripheral blood of cancer patients" by Peitao Lv, Zhewen Tang, Xingjie Liang, Mingzhou Guo and Ray P.S. Han is published in the journal Biomicrofluidics. dx.doi.org/10.1063/1.4808456

Related Stories

Detecting circulating tumor cells

March 25, 2013
A proof-of-concept device is nearly perfect in separating breast cancer cells from blood.

Researchers identify potential treatment target for metastatic pancreatic cancer using CTC chip technology

July 30, 2012
(Medical Xpress) -- Researchers with the Stand Up To Cancer CTC Chip Dream Team have identified a potential treatment target in metastatic pancreatic cancer through a detailed analysis of genes expressed in circulating tumor ...

Third-generation device significantly improves capture of circulating tumor cells

April 3, 2013
A new system for isolating rare circulating tumor cells (CTCs) – living solid tumor cells found at low levels in the bloodstream – shows significant improvement over previously developed devices and does not require prior ...

New diagnostic technology may lead to individualized treatments for prostate cancer

April 2, 2013
(Medical Xpress)—A research team jointly led by scientists from Cedars-Sinai Medical Center and the University of California, Los Angeles, have enhanced a device they developed to identify and "grab" circulating tumor cells, ...

Hunting for the last remaining tumour cell

October 29, 2012
The 7.5 millilitres of blood contained in a standard sample tube is not nearly enough to detect circulating tumour cells (CTCs) in the blood of patients with metastatic breast cancer, prostate cancer, or colorectal cancer ...

Potential treatment target identified in an animal model of pancreatic cancer

July 1, 2012
Detailed analysis of genes expressed in circulating tumor cells (CTCs) -- cells that break off from solid tumors and travel through the bloodstream -- has identified a potential treatment target in metastatic pancreatic cancer. ...

Recommended for you

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.