Newly discovered gene regulator could precisely target sickle cell disease

October 10, 2013, Dana-Farber Cancer Institute

A research team from Dana-Farber/Boston Children's Cancer and Blood Disorders Center and other institutions has discovered a new genetic target for potential therapy of sickle cell disease (SCD). The target, called an enhancer, controls a molecular switch in red blood cells called BCL11A that, in turn, regulates hemoglobin production.

The researchers—led by Daniel Bauer, MD, PhD, and Stuart Orkin, MD, of Dana-Farber/Boston Children's—reported their findings today in Science.

Prior work by Orkin and others has shown that when flipped off, BCL11A causes red blood cells to produce that, in SCD patients, is unaffected by the and counteracts the deleterious effects of sickle hemoglobin. BCL11A is thus an attractive target for treating SCD.

The disease affects roughly 90,000 to 100,000 people in the United States and millions worldwide.

However, BCL11A plays important roles in other cell types, including the immune system's antibody-producing B cells, which raises concerns that targeting it directly in sickle cell patients could have unwanted consequences.

The discovery of this enhancer—which regulates BCL11A only in red blood cells—opens the door to targeting BCL11A in a more precise manner. Approaches that disable the enhancer would have the same end result of turning on fetal hemoglobin in red due to loss of BCL11A, but without off-target effects in other .

The findings were spurred by the observation that some patients with SCD spontaneously produce higher levels of fetal hemoglobin and enjoy an improved prognosis. The researchers found that these individuals possess naturally occurring beneficial mutations that function to weaken the enhancer, turning BCL11A's activity down and allowing to manufacture some fetal hemoglobin.

"This finding gives us a very specific target for therapies," said Orkin, a leader of Dana-Farber/Boston Children's who serves as chairman of pediatric oncology at Dana-Farber Cancer Institute and associate chief of hematology/oncology at Boston Children's Hospital. "Coupled with recent advances in technologies for gene engineering in intact cells, it could lead to powerful ways of manipulating hemoglobin production and new treatment options for diseases."

"This is a very exciting study," said Feng Zhang, PhD, a molecular biologist and specialist in genome engineering at the McGovern Institute for Brain Research at the Massachusetts Institute of Technology (MIT) and the Broad Institute of MIT and Harvard, who was not involved in the study. "The findings suggest a potential new approach to treating sickle cell disease and related diseases, one that relies on nucleases to remove this regulatory region, rather than adding an exogenous gene as in classic gene therapy."

Explore further: Researchers highlight potential gene therapy approach to sickle cell disease

More information: "An Erythroid Enhancer of BCL11A Subject to Genetic Variation Determines Fetal Hemoglobin Level" Science, 2013.

Related Stories

Researchers highlight potential gene therapy approach to sickle cell disease

December 11, 2012
Researchers at Dana-Farber/Children's Hospital Cancer Center (DF/CHCC) have taken the first preliminary steps toward developing a form of gene therapy for sickle cell disease. In an abstract presented on Dec. 10 at the 54th ...

Scientists reverse sickle cell anemia by turning on fetal hemoglobin

October 13, 2011
Not long after birth, human babies transition from producing blood containing oxygen-rich fetal hemoglobin to blood bearing the adult hemoglobin protein. For children with sickle cell disease, the transition from the fetal ...

Arginine therapy shows promise for sickle cell pain

September 16, 2013
Arginine therapy may be a safe and inexpensive treatment for acute pain episodes in patients with sickle cell disease, according to results of a recent clinical study. The study was the first randomized placebo-controlled ...

Recommended for you

Study differentiates iPS cells into various ocular lineages

December 19, 2018
The discovery of pluripotent stem cells, which have the ability to differentiate into the huge range of different cell lineages that make up the human body, signaled the start of a new era in biological science and medicine. ...

Female biology – two X chromosomes and ovaries – extends life and protects mice from aging

December 18, 2018
Around the world, women outlive men. This is true in sickness and in health, in war and in peace, even during severe epidemics and famine. In most animal species, females live longer than males.

Get a warrant: Researchers demand better DNA protections

December 18, 2018
New laws are required to control access to medical genetic data by law enforcement agencies, an analysis by University of Queensland researchers has found.

Wound care revolution: Put away your rulers and reach for your phone

December 18, 2018
Monitoring a wound is critical, especially in diabetic patients, whose lack of sensation due to nerve damage can lead to infection of a lesion and, ultimately, amputation. Clinicians and healthcare professionals at the McGill ...

Using light to stop itch

December 17, 2018
Itch is easily one of the most annoying sensations. For chronic skin diseases like eczema, it's a major symptom. Although it gives temporary relief, scratching only makes things worse because it can cause skin damage, additional ...

Law professor suggests a way to validate and integrate deep learning medical systems

December 13, 2018
University of Michigan professor W. Nicholson Price, who also has affiliations with Harvard Law School and the University of Copenhagen Faculty of Law, suggests in a Focus piece published in Science Translational Medicine, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.