Primate brains follow predictable development pattern

Primate brains follow predictable development pattern
Lead author Tristan Chaplin found that parts of primate brains associated with higher level cognition grow disproportionately large in a predictable way.

(Medical Xpress)—In a breakthrough for understanding brain evolution, neuroscientists have shown that differences between primate brains - from the tiny marmoset to human – can be largely explained as consequences of the same genetic program.

In research published in the Journal of Neuroscience, Professor Marcello Rosa and his team at Monash University's School of Biomedical Sciences and colleagues at Universidade Federal do Rio de Janeiro, in Brazil, used computer modelling to demonstrate that the substantial enlargement of some areas of the human , vital to advanced cognition, reflected a consistent pattern that is seen across of all sizes.

This finding suggests how the neural circuits responsible for traits that we consider uniquely human – such as the ability to plan, make complex decisions and speak – could have emerged simply as a natural consequence of the evolution of larger brains.

"We have known for a long time that certain areas of the are much larger than one would expect based on how monkey brains are organised," Professor Rosa said.

"What no one had realised is that this selective enlargement is part of a trend that has been present since the dawn of primates."

Using publicly available brain maps, MRI imaging data and modelling software, the neuroscientists compared the sizes of different brain areasin humans and three monkey species: marmosets, capuchins and macaques. They found that two regions, the lateral prefrontal cortex and the temporal parietal junction, expand disproportionally to the rest of the brain.

The prefrontal cortex is related to long term planning, personality expression, decision-making, and behaviour modification. The temporal parietal junction is related to self-awareness and self-other distinction.

Lead author Tristan Chaplin, from the Department of Physiology will commence his PhD next year. He said the findings showed that those areas of the brain grew disproportionately in a predictable way.

"We found that the larger the brain is, the larger these areas get," Tristan said.

"When you go from a small to big monkey - the marmoset to macaque - the and temporal parietal junction get larger relative to the rest of the cortex, and we see the same thing again when you compare macaques to humans."

"This trend argues against the view that specific human mutations gave us these larger areas and advanced cognition and behaviour, but are a consequence of what happens in development when you grow a larger brain," Tristan said.

Professor Rosa said the pattern held for primate species that evolved completely separately.

"If you compare the capuchin of South America and the macaque of Asia, their brains are almost identical, although they developed on opposite sides of the world. They both reflect the genetic plan of how a primate brain grows," Professor Rosa said.

This is the first computational comparative study conducted across several primate species. Tristan now hopes, in collaboration with zoos, to check if our closest primate relatives, the chimpanzees and gorillas, also have brain areas organised as his theory predicts.


Explore further

Two heads are better than one: Gene expression reveals molecular mechanisms underlying evolution of cerebral cortex

More information: www.jneurosci.org/content/33/3 … /15120.full.pdf+html
Journal information: Journal of Neuroscience

Provided by Monash University
Citation: Primate brains follow predictable development pattern (2013, October 8) retrieved 17 July 2019 from https://medicalxpress.com/news/2013-10-primate-brains-pattern.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
 shares

Feedback to editors

User comments

JVK
Oct 08, 2013
"This trend argues against the view that specific human mutations gave us these larger areas and advanced cognition and behaviour, but are a consequence of what happens in development when you grow a larger brain," Tristan said.

The ecological, social, neurogenic, and socio-cognitive niche construction detailed in my model of nutrient-dependent pheromone-controlled adaptive evolution also argues against the involvement of mutations. Besides, no experimental evidence ever suggested that mutations were fixed in the genome of any species, which means they could not possibly have contributed to population-wide differences attributed to natural selection.

But try telling that to any evolutionary theorist whose beliefs are based on a ridiculous theory of mutation-driven evolution. They will argue to the death their belief, despite the lack of scientific support, but not consider reading current literature. http://www.socioa...ew/20553

JVK
Oct 08, 2013
I've been banned from contributing to the evolutionary-psychology yahoo group owned by Robert Karl Stonjek. Too many people complained that I was insulting them in the context of my comments about their ridiculous theories of mutation-driven evolution. In the past 2.5 years, participants have never addressed the content of my last two published papers or others published since 1995. Chelo et al 2013 explains why they feel insulted by me. http://www.nature...417.html Most of them thought there was experimental proof for the role of mutations in natural selection. Chelo et al report "There is no experimental test of Haldane's insight..." which "...has since become the cornerstone of modern population genetics." Would you be insulted if someone called your attention to the fact that there was no experimental support for your ridiculous theories? Or would you try to support them with experimental evidence?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more