Different brain regions process different types of fear

November 11, 2013, European Molecular Biology Laboratory
Credit: John Wood

(Medical Xpress)—What do bullies and sex have in common? Based on work by scientists at the European Molecular Biology Laboratory (EMBL) in Monterotondo, Italy, it seems that the same part of the brain reacts to both. In a study published today in Nature Neuroscience, the researchers found that – at least in mice – different types of fear are processed by different groups of neurons, even if the animals act out those fears in the same way. The findings could have implications for addressing phobias and panic attacks in humans.

"We found that there seems to be a circuit for handling fear of predators – which has been described anatomically as a kind of defence circuit– but fear of members of the same species uses the reproductive circuit instead," says Bianca Silva, who carried out the work, "and fear of pain goes through yet another part of the brain." 

Working in the lab of Cornelius Gross at EMBL, Silva exposed mice to three threats: another mouse (chosen for being particularly aggressive), a rat (the mouse's natural predator) or a mild electric shock to the feet. The mice showed the same typical fearful behaviours – running away, freezing – in response to all threats, but their brains painted a different picture. When the scientists mapped the brain activity of mice exposed to the aggressive mouse and the rat , they saw that different parts of a region called the ventromedial hypothalamus (VMH) 'lit up' depending on the threat. Fear of the mouse seemed to activate the bottom and sides of the VMH, while fear of the rat seemed to be processed by the VMH's central and upper areas. This was confirmed when the scientists used drugs to block only the neurons in those 'rat fear' areas: mice were no longer afraid of the rat, but were still afraid of the mouse, showing that mice need this specifically to process fear of predators.

The human brain has similar circuits, and we too experience different kinds of fear, so the results hint at the possibility of developing more efficient treatments for specific phobias or , by targeting only the relevant region of the brain.

For their part, the EMBL scientists plan to probe these fears further. 

"What we're interested in, in the long-run, is if these results represent a kind of mental state," says Cornelius Gross, who led the work. "If so, should be able to be in that state without expressing it in their behaviour – do they re-live that fear, for example? These are not easy questions to ask in the mouse, but we're looking into them."

Gross's lab are also looking at how these different fears – and the neural circuits that process them – may have evolved. Working with Detlev Arendt's group at EMBL Heidelberg, they have discovered a similar region in a marine worm thought to closely resemble our ancestors from 600 million years ago. Now the team is exploring the possibility that this represents an ancestral core circuit that those ancestors handed down to us all, from worms to man.

Explore further: Neuroscientists determine how treatment for anxiety disorders silences fear neurons

More information: Silva, B.A., Mattucci, C., Illarionova, A., Grinevich, V., Canteras, N.S. & Gross, C. Independent hypothalamic circuits for social and predator fear. Published online in Nature Neuroscience on 10 November 2013. DOI: 10.1038/nn.3573

Related Stories

Neuroscientists determine how treatment for anxiety disorders silences fear neurons

November 1, 2013
(Medical Xpress)—Excessive fear can develop after a traumatic experience, leading to anxiety disorders such as post-traumatic stress disorder and phobias. During exposure therapy, an effective and common treatment for anxiety ...

Modifying activity of neuronal networks that encode spatial memories leads to formation of incorrect fear memory in mice

September 13, 2013
The formation and retrieval of memories allows all kinds of organisms, including humans, to learn and thrive in their environment. Yet our memories are not always accurate, and mistaken remembrances can have important consequences, ...

Genetic identification of a neural circuit that suppresses appetite

October 15, 2013
Scientists at the University of Washington have used genetic engineering to identify a population of neurons that tell the brain to shut off appetite. Their study, "Genetic identification of a neural circuit that suppresses ...

Researchers find amygdala not always necessary for fear

February 4, 2013
(Medical Xpress)—Researchers at the University of Iowa have found that three volunteer women with defective amygdalas were able to experience internal fear. In their paper published in the journal Nature Neuroscience, the ...

Recommended for you

Your brain responses to music reveal if you're a musician or not

January 23, 2018
How your brain responds to music listening can reveal whether you have received musical training, according to new Nordic research conducted in Finland (University of Jyväskylä and AMI Center) and Denmark (Aarhus University).

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.