Molecular interplay explains many immunodeficiencies

Australian scientists have described an exquisitely balanced interplay of four molecules that trigger and govern antibody production in immune cells. As well as being an important basic science discovery, it helps explain why people with mutations in any one of the associated genes cannot fight infection effectively, and develop rare and crippling immunodeficiency disorders.

Our immune system is made of a number of different types of that undertake specific functions. Those that make antibodies are known as 'B cells', and they become active after infection. Once a B cell is activated, it can proliferate into thousands of clones, known as 'plasma cells', which patrol the body and secrete large amounts of antibody to destroy the invader.

Dr Lucinda Berglund and Associate Professor Stuart Tangye, from Sydney's Garvan Institute of Medical Research, are the first to describe a specific molecular process that controls the activation and differentiation of B cells. They used human blood and tissue samples to show that the chemical messaging molecule interleukin 21 (IL-21) activates the STAT3 gene in B cells, which in turn triggers the expression of a molecule known as 'CD25', a that attracts a second messaging molecule, interleukin 2 (IL-2). IL-21 and IL-2 then work co-operatively to induce plasma cell development and . Their findings are published in the international journal Blood.

"The interesting and informative aspect of this finding for me is that some people have mutations in the IL-21 receptor, some have mutations in STAT3, while others have mutations in CD25, and they all have B cell defects," said Associate Professor Tangye.

"By examining B cells from people with specific , we revealed that both components of the IL-21 receptor are critical for B cell function – and people can have mutations in either, with equally debilitating effects. We see these effects in patients with X-linked , whose impaired response to IL-21 causes severe antibody deficiency."

"Patients with mutations in the STAT3 gene develop Hyper IgE Syndrome, another rare immunodeficiency that manifests as compromised antibody production and greatly depleted immune defences."

Immunodeficiencies arising from in single genes give scientists a unique opportunity to understand B cell signaling, and reveal potential targets for modulating B cell responses in immunodeficiency and autoimmunity.

The current study arose from analysing global gene expression in B cells from healthy people and people with STAT3 deficiency – which immediately highlighted genes that were poorly expressed in disease. The Tangye lab plans to investigate other genes that impact the function of B cells.

More information: bloodjournal.hematologylibrary … 3-06-506865.full.pdf

Journal information: Blood
Citation: Molecular interplay explains many immunodeficiencies (2013, November 11) retrieved 18 March 2024 from https://medicalxpress.com/news/2013-11-molecular-interplay-immunodeficiencies.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Silencing of molecular 'conversation' may help curb severe allergies

 shares

Feedback to editors