Gene therapy for human skin disease produces long-term benefits

December 26, 2013

Stem cell-based gene therapy holds promise for the treatment of devastating genetic skin diseases, but the long-term clinical outcomes of this approach have been unclear. In a study online December 26th in the ISSCR's journal Stem Cell Reports, published by Cell Press, researchers evaluated a patient with a genetic skin disorder known as epidermolysis bullosa (EB) nearly seven years after he had undergone a gene therapy procedure as part of a clinical trial. The study revealed that a small number of skin stem cells transplanted into the patient's legs were sufficient to restore normal skin function, without causing any adverse side effects.

"These findings pave the way for the future safe use of epidermal stem cells for combined cell and of and other genetic diseases," says senior study author Michele De Luca of the University of Modena and Reggio Emilia.

EB is a painful condition that causes the skin to be very fragile and to blister easily, and it can also cause life-threatening infections. Because there is no cure for the disease, current treatment strategies focus on relieving symptoms. To evaluate stem cell-based gene therapy as a potential treatment, De Luca and his colleagues previously launched a phase I/II clinical trial at the University of Modena and recruited an EB patient named Claudio. The researchers took from Claudio's palm, corrected the genetic defect in these cells, and then transplanted them into Claudio's upper legs.

In the new study, De Luca and his team found that this treatment resulted in long-term restoration of normal skin function. Nearly seven years later, Claudio's upper legs looked normal and did not show signs of blisters, and there was no evidence of tumor development. Remarkably, a small number of transplanted stem cells was sufficient for long-lasting skin regeneration.

Even though Claudio's skin had undergone about 80 cycles of renewal during this time period, the transplanted stem cells still retained molecular features of palm skin cells and did not adopt features of leg skin cells. "This finding suggests that primarily regenerate the tissue in which they normally reside, with little plasticity to regenerate other tissues," De Luca says. "This calls into question the supposed plasticity of adult and highlights the need to carefully chose the right type of stem cell for therapeutic tissue regeneration."

Explore further: Stem cell transplant repairs damaged gut in mouse model of inflammatory bowel disease

More information: Stem Cell Reports, De Rosa et al.: "Long-term stability and safety of transgenic cultured epidermal stem cells in gene therapy of junctional epidermolysis bullosa." dx.doi.org/10.1016/j.stemcr.2013.11.001

Related Stories

Stem cell transplant repairs damaged gut in mouse model of inflammatory bowel disease

October 17, 2013
A source of gut stem cells that can repair a type of inflammatory bowel disease when transplanted into mice has been identified by researchers at the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute at ...

Tracking nanodiamond-tagged stem cells

August 5, 2013
A method that is used to track the fate of a single stem cell within mouse lung tissue is reported in a study published online this week in Nature Nanotechnology. The method may offer insights into the factors that determine ...

Researchers learn how to break a sweat

October 23, 2013
Without sweat, we would overheat and die. In a recent paper in the journal PLOS ONE, USC faculty member Krzysztof Kobielak and a team of researchers explored the ultimate origin of this sticky, stinky but vital substance—sweat ...

Scientists 'switch off' defective genes in cure for skin blistering diseases

November 7, 2011
(Medical Xpress) -- Scientists have taken major steps forward to curing severe skin blistering diseases like epidermolysis bullosa which ruin thousands of lives in the UK every year.

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Jimee
not rated yet Dec 26, 2013
Fantastic!
Sinister1812
not rated yet Dec 26, 2013
Great, let's just hope it gets somewhere... in 60 years time.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.