Going against the flow: Halting atherosclerosis by targeting micro RNA

December 18, 2013, Emory University

Researchers at Emory and Georgia Tech have developed a potential treatment for atherosclerosis that targets a master controller of the process.

The results are scheduled for publication Dec. 18 in the journal Nature Communications.

In a twist, the master controller comes from a source that scientists had thought was leftover garbage. It is a micro RNA molecule, which comes from an unused template that remains after punching out ribosomes –– workhorse protein factories found in all cells.

The treatment works by stopping the inflammatory effects of disturbed blood flow on cells that line . In animal models of , a drug that blocks the micro RNA can stop arteries from becoming blocked, despite the ongoing stress of high-fat diet. The micro RNA appears to function similarly in human cells.

"We've known that aerobic exercise provides protection against atherosclerosis, partly by improving patterns of blood flow. Now we're achieving some insight into how," says senior author Hanjoong Jo, PhD. "Healthy flow tunes down the production of bad actors like this micro RNA. Targeting it could form the basis for a therapeutic approach that could be translated with relative ease compared to other drugs."

Jo is John and Jan Portman professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. The co-first authors of the paper are postdoctoral fellows Dong Ju Son, PhD and Sandeep Kumar, PhD.

In atherosclerosis, arterial walls thicken because of a gradual build-up of , lipids and cholesterol. The process can lead to plaque formation, and eventually to heart attacks and strokes.

Atherosclerosis occurs preferentially in branched or curved regions of arteries, because of the patterns of blood flow imposed by the shape of blood vessels. Constant, regular flow of blood appears to promote healthy blood vessels, while erratic or turbulent flow can lead to disease.

Jo and his colleagues have developed an animal model where it is possible to drive the development of atherosclerosis quickly and selectively, by partially restricting blood flow in a mouse's carotid artery. To accelerate the process, the mice also have a deficiency in ApoE, important for removing lipids and cholesterol from the blood, and are fed a high-fat diet. The model allows researchers to compare molecules that are activated in endothelial cells, which line blood vessels, on the disturbed side versus the undisturbed side in the same animal.

Son and Kumar focused on micro RNAs, short snippets of RNA that can inhibit the activity of many genes at once. Micro RNAs were recently discovered to be able to travel from cell to cell, and thus could orchestrate processes such as atherosclerosis. Out of all the micro RNAs the researchers examined, one in particular, called miR-712, was the micro RNA most strongly induced by disturbed blood flow in the atherosclerosis model system.

In response to disturbed or unhealthy , endothelial cells produce miR-712, the researchers found. miR-712 in turn inhibits a gene called TIMP3, which under healthy flow conditions restrains inflammation in endothelial cells.

The researchers were surprised to find that miR-712 comes from leftovers remaining from a long RNA that is used to form ribosomes. Ribosomes are ubiquitous and perform the basic housekeeping function of protein assembly.

"This is one of the most abundant streams of RNA that cells produce, and it turns out to be the source for a molecule that controls atherosclerosis," Jo says. "Why did nature do it that way? I don't think we know yet."

By using a technology called "locked nucleic acids," Jo and his colleagues tested the effects of blocking miR-712 in the body. When given to mice in the rapid atherosclerosis model, the anti-miR-712 drug inhibited the development of arterial blockages. Without the drug, plaques blocked an average of 80 percent of the disturbed carotid artery, but the drug cut that in half. The drug worked similarly in another model of atherosclerosis where animals develop disease more slowly.

Locked nucleic acids that target an unrelated disease (hepatitis C) are being tested in clinical trials, and so far appear to be effective. A micro RNA similar to miR-712 appears to have the same inflammatory control function in ; it's called miR-205.

Jo says his team is devising ways using nanotechnologies to deliver anti-miR-712 drugs to the heart or to specifically to achieve efficient therapeutic effect with minimum side-effects.

"It is notable that in our experiments, the anti-miR-712 drug was delivered systemically, but still made its way to the right place and had a strong effect," Jo says. "This is a good sign for future translational studies."

Explore further: The Janus-like nature of JAM-A

Related Stories

The Janus-like nature of JAM-A

September 30, 2013
A new study by Ludwig-Maximilians-Universitaet (LMU) in Munich researchers led by Christian Weber sheds light on the role of the adhesion molecule JAM-A in the recruitment of immune cells to the inner layer of arteries – ...

Atherosclerosis: Specific microRNAs promote inflammation

March 22, 2013
(Medical Xpress)—Atherosclerosis, an inflammatory reaction, is at the root of the most common forms of cardiovascular disease. Researchers at Ludwig-Maximilians-Universitaet in Munich have now identified a microRNA that ...

Team creates cells that line blood vessels

August 22, 2013
In a scientific first, Harvard Stem Cell Institute scientists have successfully grown the cells that line the blood vessels—called vascular endothelial cells—from human induced pluripotent stem cells (iPSCs), revealing ...

Study could lead to drug therapies for preventing atherosclerosis

December 7, 2011
By changing the behavior of certain cells within human blood vessels, Cornell University researchers have discovered important clues as to the underlying causes of atherosclerosis – a discovery researchers hope can lead ...

Researchers identify target to prevent hardening of arteries

May 16, 2013
The hardening of arteries is a hallmark of atherosclerosis, an often deadly disease in which plaques, excessive connective tissue, and other changes build up inside vessel walls and squeeze off the flow of oxygen-rich blood ...

Recommended for you

A nanoparticle inhalant for treating heart disease

January 18, 2018
A team of researchers from Italy and Germany has developed a nanoparticle inhalant for treating people suffering from heart disease. In their paper published in the journal Science Translational Medicine, the group describes ...

Starting periods before age of 12 linked to heightened risk of heart disease and stroke

January 15, 2018
Starting periods early—before the age of 12—is linked to a heightened risk of heart disease and stroke in later life, suggests an analysis of data from the UK Biobank study, published online in the journal Heart.

'Decorated' stem cells could offer targeted heart repair

January 10, 2018
Although cardiac stem cell therapy is a promising treatment for heart attack patients, directing the cells to the site of an injury - and getting them to stay there - remains challenging. In a new pilot study using an animal ...

Two simple tests could help to pinpoint cause of stroke

January 10, 2018
Detecting the cause of the deadliest form of stroke could be improved by a simple blood test added alongside a routine brain scan, research suggests.

Exercise is good for the heart, high blood pressure is bad—researchers find out why

January 10, 2018
When the heart is put under stress during exercise, it is considered healthy. Yet stress due to high blood pressure is bad for the heart. Why? And is this always the case? Researchers of the German Centre for Cardiovascular ...

Heart-muscle patches made with human cells improve heart attack recovery

January 10, 2018
Large, human cardiac-muscle patches created in the lab have been tested, for the first time, on large animals in a heart attack model. This clinically relevant approach showed that the patches significantly improved recovery ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
not rated yet Dec 18, 2013
This report appears to link nutrient uptake to the microRNA/messenger RNA balance, which probably controls all downstream aspects of the alternative spllicings that lead to the differentiation of cell types, individuals, and species via ecological variation and the metabolism of nutrients to species specific pheromones that control reproduction. Simply put, it appears to be a correct representation of what evolutionary theorists insist on calling mutation-driven evolution.

The difference between theory and the facts represented here, is the experimental evidence of conserved molecular mechanisms in species from microbes to man. Theorists seem unable to understand that "you are what you eat" does not infer any species mutated to become another species. It means ecological adaptation is the cause of species diversity. Thus, this refutation of mutation-driven evolution may be added to all the other refutations as theorists continue to cling tightly to the nonsense of natural selection.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.