Discovery may lead to new drugs for osteoporosis

January 30, 2014
Discovery may lead to new drugs for osteoporosis
As seen through a microscope, the leg bone of a normal mouse (left) makes considerably less new bone than a mouse that produces high levels of a signaling protein, WNT7B, that stimulates new bone growth (shown in pink on the right). The protein could become a target for new drugs to treat osteoporosis and other conditions related to bone loss. Credit: Washington University School of Medicine

Scientists at Washington University School of Medicine in St. Louis have discovered what appears to be a potent stimulator of new bone growth. The finding could lead to new treatments for osteoporosis and other diseases that occur when the body doesn't make enough bone.

Osteoporosis affects 55 percent of Americans age 50 and older. Of that age group, one in three women and one in 12 men are believed to have osteoporosis, a condition responsible for millions of fractures each year, mostly involving the hips, wrist or lower back vertebrae.

"We have been looking for new ways to stimulate formation," said principal investigator Fanxin Long, PhD. "The tools we already have are very good at slowing the breakdown of bone, but we need better ways to stimulate new bone growth."

Studying mice, Long focused on a pathway involved in bone formation. The so-called WNT proteins carry messages into cells and regulate embryonic and adult tissue in mammals, including humans. The WNT proteins enter cells from the outside and then can activate multiple pathways inside those cells.

Long's team reports Jan. 30 in the journal PLOS Genetics that a specific member of the WNT family of proteins dramatically enhances bone formation, and it works through a mechanism that has not been well-studied in bone before.

It's called the mTOR pathway, and it interprets a cell's surrounding environment, and nutritional and energy status.

"By analyzing that information, mTOR can determine whether a cell should go into a mode to make lots of stuff, like proteins or, in this case, new bone," explained Long, a professor of orthopaedic surgery. "Bone formation is an energetically expensive process, so it makes sense that some regulator would tell a cell whether there is sufficient energy and material to manufacture new bone."

Long and his colleagues studied mice that made either normal levels or an extra amount of WNT proteins. They found that a particular WNT protein, WNT7B, is a potent stimulator of bone formation in mice. Mice engineered to make additional WNT7B manufactured new bone at much higher rates than normal mice.

The researchers also found that the protein created more bone by greatly increasing the number of bone-manufacturing cells in the mice. Our bones are in a constant state of flux as the number of bone-making (osteoblast) cells fluctuates, while the number of bone-degrading (osteoclast) cells also adjusts.

The WNT7B protein had no effect on the total activity of bone-degrading osteoclasts but substantially increased the number of bone-building osteoblast cells. And it did so by stimulating the mTOR pathway.

"It's still early, but our finding seems to point out that activating the mTOR pathway may be a good way to stimulate bone growth," said Long, also a professor of medicine and of developmental biology. "This is a new twist because much of the current focus in mTOR-related drug development has been on compounds that inhibit the pathway to shut down cancer ."

Drugs that inhibit the mTOR pathway also are used to suppress the immune response in patients undergoing organ transplants. Interestingly, bone problems are common in those patients.

"Many develop bone problems within a few months of receiving transplants because of the heavy doses of immunosuppressors they receive," Long explained. "Scientists have not looked carefully at how drugs used to prevent organ rejection can have a detrimental effect on bone, but our study would suggest that if those drugs inhibit mTOR, they could disrupt bone formation."

Next, Long plans to look more deeply at the mechanism through which the WNT proteins instruct to activate mTOR and stimulate . His goal is to learn what happens farther along in that pathway to create new bone. If more specific targets can be identified in the bone-formation process, drugs potentially could be developed to stimulate in people with osteoporosis without causing unwanted side effects.

Explore further: Choloroquine reduces formation of bone resorbing cells in murine osteoporosis

More information: Chen J, Tu X, Esen E, Joeng KS, Lin C, Arbeit JM, Ruegg MA, Hall MN, Ma L, Long F. WNT7B promotes bone formation in part through mTORC1. PLoS Genetics, Jan. 30, 2014.

Related Stories

Choloroquine reduces formation of bone resorbing cells in murine osteoporosis

December 9, 2013
Bone homeostasis requires precise balance between deposition of new bone by osteoblasts and resorption of old bone by osteoclasts. Bone diseases, including osteoporosis and rheumatoid arthritis, are the result of increased ...

Identification of a molecule linking bone loss and bone formation

August 1, 2013
Bone integrity requires skeletal remodeling, which involves both bone formation and resorption. It has been previously shown that the formation of new bone is triggered by degradation of older bone. However, it is unknown ...

Zebra fish fins help researchers gain insight into bone regeneration

January 30, 2014
University of Oregon biologists say they have opened the window on the natural process of bone regeneration in zebra fish, and that the insights they gained could be used to advance therapies for bone fractures and disease.

Bone loss associated with increased production of ROS

October 15, 2013
Bone is constantly being broken down and remodeled. Osteoporosis results when bone resorption outpaces bone regeneration. Production of reactive oxygen species, a form of oxidative stress, has been predicted to promote bone ...

Researchers discover new treatment for osteoporosis

November 21, 2013
University of Sydney researchers have discovered a promising treatment for osteoporosis, which is easily delivered in water soluble form.

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.