Natural plant compound prevents Alzheimer's disease in mice

January 28, 2014
Natural plant compound prevents Alzheimer's disease in mice
Pamela Maher and Antonio Currais. Credit: Salk Institute for Biological Studies

(Medical Xpress)—A chemical that's found in fruits and vegetables from strawberries to cucumbers appears to stop memory loss that accompanies Alzheimer's disease in mice, scientists at the Salk Institute for Biological Studies have discovered. In experiments on mice that normally develop Alzheimer's symptoms less than a year after birth, a daily dose of the compound—a flavonol called fisetin—prevented the progressive memory and learning impairments. The drug, however, did not alter the formation of amyloid plaques in the brain, accumulations of proteins which are commonly blamed for Alzheimer's disease. The new finding suggests a way to treat Alzheimer's symptoms independently of targeting amyloid plaques.

"We had already shown that in normal animals, fisetin can improve memory," says Pamela Maher, a senior staff scientist in Salk's Cellular Neurobiology Laboratory who led the new study. "What we showed here is that it also can have an effect on animals prone to Alzheimer's."

More than a decade ago, Maher discovered that fisetin helps protect neurons in the brain from the effects of aging. She and her colleagues have since—in both isolated cell cultures and mouse studies—probed how the compound has both antioxidant and anti-inflammatory effects on cells in the brain. Most recently, they found that fisetin turns on a cellular pathway known to be involved in memory.

"What we realized is that fisetin has a number of properties that we thought might be beneficial when it comes to Alzheimer's," says Maher.

So Maher—who works with Dave Schubert, the head of the Cellular Neurobiology Lab—turned to a strain of that have mutations in two genes linked to Alzheimer's disease. The researchers took a subset of these mice and, when they were only three months old, began adding fisetin to their food. As the mice aged, the researchers tested their memory and learning skills with water mazes. By nine months of age, mice that hadn't received fisetin began performing more poorly in the mazes. Mice that had gotten a daily dose of the compound, however, performed as well as normal mice, at both nine months and a year old.

"Even as the disease would have been progressing, the fisetin was able to continue preventing symptoms," Maher says.

In collaboration with scientists at the University of California, San Diego, Maher's team next tested the levels of different molecules in the brains of mice that had received doses of fisetin and those that hadn't. In mice with Alzheimer's symptoms, they found, pathways involved in cellular inflammation were turned on. In the animals that had taken fisetin, those pathways were dampened and anti-inflammatory molecules were present instead. One protein in particular—known as p35—was blocked from being cleaved into a shorter version when fisetin was taken. The shortened version of p35 is known to turn on and off many other molecular pathways. The results were published December 17, 2013, in the journal Aging Cell.

Studies on isolated tissue had hinted that fisetin might also decrease the number of in Alzheimer's affected brains. However, that observation didn't hold up in the mice studies. "Fisetin didn't affect the plaques," says Maher. "It seems to act on other pathways that haven't been seriously investigated in the past as therapeutic targets."

Next, Maher's team hopes to understand more of the molecular details on how fisetin affects memory, including whether there are targets other than p35.

"It may be that compounds like this that have more than one target are most effective at treating Alzheimer's disease," says Maher, "because it's a complex disease where there are a lot of things going wrong."

They also aim to develop new studies to look at how the timing of fisetin doses affect its influence on Alzheimer's.

"The model that we used here was a preventive model," explains Maher. "We started the mice on the drugs before they had any . But obviously human patients don't go to the doctor until they are already having memory problems." So the next step in moving the discovery toward the clinic, she says, is to test whether fisetin can reverse declines in memory once they have already appeared.

Explore further: Flavonoids represent two-fisted assault on diabetes, nervous system disorders: study

More information: Currais, A., Prior, M., Dargusch, R., Armando, A., Ehren, J., Schubert, D., Quehenberger, O. and Maher, P. (2013), Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in Alzheimer's disease transgenic mice. Aging Cell. DOI: 10.1111/acel.12185

Related Stories

Flavonoids represent two-fisted assault on diabetes, nervous system disorders: study

June 27, 2011
A recent study from scientists at the Salk Institute for Biological Studies suggests that a strawberry a day (or more accurately, 37 of them) could keep not just one doctor away, but an entire fleet of them, including the ...

Mechanism in Alzheimer's-related memory loss identified

January 19, 2014
Cleveland Clinic researchers have identified a protein in the brain that plays a critical role in the memory loss seen in Alzheimer's patients, according to a study to be published in the journal Nature Neuroscience and posted ...

Study finds diabetes raises levels of proteins linked to Alzheimer's features

October 26, 2012
Growing evidence suggests that there may be a link between diabetes and Alzheimer's disease, but the physiological mechanisms by which diabetes impacts brain function and cognition are not fully understood. In a new study ...

The benefits of a spotless mind

November 15, 2013
Alzheimer's disease is an age-related memory disorder characterized by the accumulation of clumps of the toxic amyloid-β (Aβ) protein fragment in the extracellular space around neurons in the brain. Drugs that help to 'clean ...

Scientists develop drug that slows Alzheimer's in mice

May 13, 2013
A drug developed by scientists at the Salk Institute for Biological Studies, known as J147, reverses memory deficits and slows Alzheimer's disease in aged mice following short-term treatment. The findings, published May 14 ...

Recommended for you

Lifestyle changes to stave off Alzheimer's? Hints, no proof

July 20, 2017
There are no proven ways to stave off Alzheimer's, but a new report raises the prospect that avoiding nine key risks starting in childhood just might delay or even prevent about a third of dementia cases around the world.

Blood test identifies key Alzheimer's marker

July 19, 2017
A new study led by researchers at Washington University School of Medicine in St. Louis suggests that measures of amyloid beta in the blood have the potential to help identify people with altered levels of amyloid in their ...

Steering an enzyme's 'scissors' shows potential for stopping Alzheimer's disease

July 19, 2017
The old real estate adage about "location, location, location" might also apply to the biochemical genesis of Alzheimer's disease, according to new research from the University of British Columbia.

Brain scans may change care for some people with memory loss

July 19, 2017
Does it really take an expensive brain scan to diagnose Alzheimer's? Not everybody needs one but new research suggests that for a surprising number of patients whose memory problems are hard to pin down, PET scans may lead ...

Can poor sleep boost odds for Alzheimer's?

July 18, 2017
(HealthDay)— Breathing problems during sleep may signal an increased risk for Alzheimer's disease, a trio of studies suggests.

Hearing is believing: Speech may be a clue to mental decline

July 17, 2017
Your speech may, um, help reveal if you're uh ... developing thinking problems. More pauses, filler words and other verbal changes might be an early sign of mental decline, which can lead to Alzheimer's disease, a study suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.