A circuit for change

February 18, 2014
A circuit for change
Imaging of cell activity (green) across the hippocampus reveals CA2 (red) can detect small changes in a familiar context. Wintzer et al, Journal Of Neuroscience 2014. Credit: RIKEN

To answer the seemingly simple question "Have I been here before?" we must use our memories of previous experiences to determine if our current location is familiar or novel. In a new study published in the Journal of Neuroscience researchers from the RIKEN Brain Science Institute have identified a region of the hippocampus, called CA2, which is sensitive to even small changes in a familiar context. The results provide the first clue to the contributions of CA2 to memory and may help shed light on why this area is often found to be abnormal in the schizophrenic brain.

Change comes in many flavors; if we move to a new country, city or house it is easy to recognize the novelty of the environment, but if we come home to find the furniture rearranged or a new piece of art on the wall, this recognition may be much slower. Scientists believe this is because memory formation requires comparing current information with previous experience and the larger the overlap, the more difficult the distinction. It has long been known that the hippocampus is a region of the brain crucial for this type of memory, however the identification of neurons responsible for this comparison has remained elusive.

In this study Marie Wintzer, Roman Boehringer, Denis Polygalov and Thomas McHugh used genetically modified mice and advanced cell imaging techniques to demonstrate that while the entire is capable of detecting large changes in context, the small and often overlooked CA2 region is exquisitely sensitive to small changes.

Mice were familiarized with one context and then placed either in a much different context or back in the original with small alterations, such as several new small objects. By detecting the expression of activity induced genes Wintzer and colleagues were able to demonstrate that just a few new objects in the otherwise unchanged context completely altered the pattern of active cells specifically in CA2. Mice that had been genetically engineered to lack this CA2 response explored the new context much less than their normal siblings.

A circuit for change
Imaging of cell activity (green) across the hippocampus reveals CA2 (red) can detect small changes in a familiar context. Wintzer et al. Journal Of Neuroscience 2014. Credit: RIKEN

"CA2 has often been overlooked or simply grouped together with its more prominent neighbors, but these data suggest it's unique and important for recognizing and reacting to changes in our environments" explains Dr. McHugh, the leader of the study.

Compared to rodents, human CA2 is proportionally larger, but still as mysterious. One intriguing finding has been that early in the onset of schizophrenia and bipolar disorder there is a loss of inhibitory neurons specifically in CA2. In addition to the memory problems that accompany these diseases, patients often exhibit a hyper-sensitivity to changes in environment and routine. This study suggests there may be a functional relationship between this sensitivity and CA2 dysfunction, hinting at a new circuit to target in our attempts to understand the function of both the normal and diseased brain.

Explore further: Novel combination of techniques reveals new details about the neuronal networks for memory

More information: Marie E. Wintzer, Roman Boehringer, Denis Polygalov, Thomas J. McHugh (2014). The hippocampal CA2 ensemble is sensitive to contextual change. J. Neuroscience, 2014.

Related Stories

Novel combination of techniques reveals new details about the neuronal networks for memory

February 7, 2014
Learning and memory are believed to occur as a result of the strengthening of synaptic connections among neurons in a brain structure called the hippocampus. The hippocampus consists of five subregions, and a circuit formed ...

Immunity restrained by ion influx

July 22, 2011
B cells maintain stockpiles of calcium ions (Ca2+), which are released during the course of the immune response. When the presence of a foreign antigen stimulates the B cell receptor (BCR) complex, these internal reserves ...

The pauses that refresh the memory

November 29, 2013
Sufferers of schizophrenia experience a broad gamut of symptoms, including hallucinations and delusions as well as disorientation and problems with learning and memory. This diversity of neurological deficits has made schizophrenia ...

Study reveals how the brain links memories of sequential events

January 23, 2014
Suppose you heard the sound of skidding tires, followed by a car crash. The next time you heard such a skid, you might cringe in fear, expecting a crash to follow—suggesting that somehow, your brain had linked those two ...

Modifying activity of neuronal networks that encode spatial memories leads to formation of incorrect fear memory in mice

September 13, 2013
The formation and retrieval of memories allows all kinds of organisms, including humans, to learn and thrive in their environment. Yet our memories are not always accurate, and mistaken remembrances can have important consequences, ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.