Blocking immune signaling stalls inflammation and insulin resistance tied to obesity

March 4, 2014

Researchers at NYU Langone Medical Center have found that blocking the action of a key signaling molecule in the immune system known as Netrin-1 stalls chronic inflammation and insulin resistance tied to obesity and often derived from fatty diets.

Reporting in this week's issue of Nature Medicine, the NYU Langone team showed in experiments in mice and human tissue that Netrin-1 signaling is propelled by fat tissue growth. The team previously discovered that Netrin-1 was secreted by the immune system clean-up cells, or macrophages, whose buildup leads to inflammation.

Among the study's key findings was that inflammatory macrophage buildup is controlled by Netrin-1, which not only attracts more macrophages into fat tissue, but also prevents macrophages from carrying away pathogens and unwanted fat cells as the immune cells would normally do. Uncontrolled inflammation is known to damage arteries and vital organs.

"Our study results show that targeting Netrin-1 can lessen and possibly reverse the chronic inflammation and insulin resistance associated with major diseases tied to obesity, such as atherosclerosis and type II diabetes," says senior study investigator Kathryn Moore, PhD, a professor of medicine and cell biology at NYU Langone Medical Center. "Our goal, of course, is to let inflammation do the infection-fighting tasks it is supposed to do while stopping it from producing any disease-causing effects in fatty tissue that it is not supposed to do."

Lead study investigator Bhama Ramkhelawon, PhD, a postdoctoral fellow in Dr. Moore's lab, says the team's latest findings are believed to be the first to identify a chemical signal that stalls macrophage movement out of fat tissue and causes the driven by obesity and fatty diets.

According to Dr. Ramkhelawon, Netrin-1 stops macrophages in their tracks, holding them back from continuing their journey to interact with other immune cells and from performing their job in clearing away damaging molecules that accumulate in diseased tissue.

Moore says the team's experiments followed directly from their 2012 research findings published in Nature Immunology, which showed that Netrin-1, a chemical typically associated with nerve development, was abundant and overactive in macrophage cells in atherosclerotic plaques. The team's earlier research had also shown that Netrin-1 bound to macrophages at a protein receptor site called Unc5b, whose action was similarly found to be elevated in fat tissue.

In the latest study, Moore and her team set out to clarify how this happens in obesity and to define the role of Netrin-1 signaling as macrophage buildup, inflammation and insulin resistance occur.

Researchers found that feeding mice a high-fat diet for 20 weeks upped production by as much as 50 percent of both Netrin-1and Unc5b when compared to levels of both in mice fed a lean diet. Results matched Netrin-1 and Unc5b analyses in macrophage samples from fat tissue samples in a dozen people, half of whom were obese.

Further experiments in which palmitate, a fatty acid tied to obesity and thought to promote inflammation, was added to mouse macrophage cultures showed a threefold increase in Netrin-1 and a fivefold increase in Unc5b activity.

Macrophage samples from the fat tissue of obese mice showed reduced movement out of fat tissue. When researchers blocked Unc5b receptors, preventing Netrin-1 attachment, macrophage migration activity was restored.

Additional experiments in mice bred with and without Netrin-1-producing macrophages showed lower and macrophage movement only in obese mice without Netrin-1. This, in turn, was tied to improvements in a half-dozen metabolic markers of , which builds during obesity, with Netrin-1-deficient mice showing at least 50 percent better blood-sugar control than mice with Netrin-1-producing macrophages.

Researchers next plan to develop highly specific, Netrin-1-inhibiting drugs, which can be targeted to specific or fat tissues as nanotherapies or delivered via catheters, so Netrin-1 function in non- elsewhere in the body is allowed to continue normally. They also plan studies to determine when inflammatory damage is likely permanent and non-reversible.

Explore further: Researchers discover new culprit in atherosclerosis

Related Stories

Researchers discover new culprit in atherosclerosis

January 9, 2012
A new study by NYU Langone Medical Center researchers identified a new culprit that leads to atherosclerosis, the accumulation of fat and cholesterol that hardens into plaque and narrows arteries. The research, published ...

New research shows obesity is an inflammatory disease

December 2, 2013
Scientists have moved a step closer to an "obesity drug" that may block the effects of diets high in sugar and fats. In a new research report published in the December 2013 issue of The FASEB Journal, scientists show that ...

Mouse study offers clues to obesity-diabetes link

December 6, 2012
(HealthDay)—Obesity and type 2 diabetes are clearly intertwined, but researchers say they've found a way to weaken the connection between the two—at least in mice.

Macrophage accumulation of triglycerides yields insights into atherosclerosis

October 1, 2012
A research report appearing in the Journal of Leukocyte Biology helps explain how specific immune cells, called macrophages, accumulate triglycerides to support their function. Because a characteristic finding in atherosclerosis ...

Recommended for you

Australian researchers in peanut allergy breakthrough

August 17, 2017
Australian researchers have reported a major breakthrough in the relief of deadly peanut allergy with the discovery of a long-lasting treatment they say offers hope that a cure will soon be possible.

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Study identifies a new way to prevent a deadly fungal infection spreading to the brain

August 16, 2017
Research led by the University of Birmingham has discovered a way to stop a deadly fungus from 'hijacking' the body's immune system and spreading to the brain.

Biophysics explains how immune cells kill bacteria

August 16, 2017
(Tokyo, August 16) A new data analysis technique, moving subtrajectory analysis, designed by researchers at Tokyo Institute of Technology, defines the dynamics and kinetics of key molecules in the immune response to an infection. ...

How a nutrient, glutamine, can control gene programs in cells

August 15, 2017
The 200 different types of cells in the body all start with the same DNA genome. To differentiate into families of bone cells, muscle cells, blood cells, neurons and the rest, differing gene programs have to be turned on ...

Scientists identify gene that controls immune response to chronic viral infections

August 15, 2017
For nearly 20 years, Tatyana Golovkina, PhD, a microbiologist, geneticist and immunologist at the University of Chicago, has been working on a particularly thorny problem: Why are some people and animals able to fend off ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.