Researchers present comprehensive 'roadmap' of blood cells

March 26, 2014

Research published online today in Blood, the Journal of the American Society of Hematology, presents an unprecedented look at five unique blood cells in the human body, pinpointing the location of key genetic regulators in these cells and providing a new tool that may help scientists to identify how blood cells form and shed light on the etiology of blood diseases.

Work published today in Blood is a subset of a much larger catalog of genetic information about nearly 1,000 and tissues unveiled today from the international research consortium "Functional Annotation of the Mamaliam Genome" (FANTOM, with this latest installment referred to as FANTOM5). Two flagship manuscripts describing pivotal observations from the expansive genome mapping project were also published online today in Nature; companion work is also being published today in BMC Genomics.

Blood comprises three main types of cells, erythrocytes (red ), leukocytes (white blood cells), and thrombocytes (platelets), all of which arise from . While the origin of these cells is known, the changes that take place in the stem cell to dictate whether it becomes red cell, white cell, or platelet – or even develops a genetic mutation – are not yet fully understood.

To provide insight into this process, investigators analyzed more than 30 different specialized subtypes of (including , T cells, monocytes, granulocytes, and B cells) and pinpointed the locations of key regions known as enhancers and promoters that determine if a particular gene will be active or silent in a cell. By identifying and mapping the locations of these regulators, investigators were able to correlate them with activity in specific genes.

"Until this point researchers could only recognize the unique signatures of enhancers and promoters; however, their exact location, as well as the association of specific enhancers to specific blood cells, remained unclear," said FANTOM5 Principal Investigator Alistair Forrest, PhD, of the RIKEN Centre for Life Science Technology in Yokohama, Japan. "This new, publicly available resource changes that, providing hematologists with a baseline reference for most blood cell types that allows them to trace the development of these cells and determine what may have occurred along the way to lead them to their final state."

With this new understanding of the location of enhancers and promoters used in each blood cell, investigators will now be better equipped to design experiments to determine how genes become activated, which could potentially lead to the development of strategies for turning off the gene to prevent or treat malignancies.

"The specific genetic alterations that are responsible for a normal cell turning into a cancer cell show up in the levels of messenger RNA in the cell, and these differences are often very subtle," said Dr. Forrest. "Now that we have these incredibly detailed pictures of each of these cell types, we can now work backwards to compare to the cells they came from originally to better understand what may have triggered the cells to malfunction, so we will be better equipped to develop new and more effective therapies."

Explore further: First comprehensive atlas of human gene activity released

More information:

  • Rönnerblad M, Andersson R, Olofsson T, et al. Analysis of the DNA methylome and transcriptome in granulopoiesis reveals timed changes and dynamic enhancer methylation [published online ahead of print March 26, 2014]. Blood. DOI: 10.1182/blood-2013-02-482893.
  • Prasad P, Rönnerblad M, Arner E, et al. High-throughput transcription profiling identifies putative epigenetic regulators of hematopoiesis [published online ahead of print March 26, 2014]. Blood. DOI: 10.1182/blood-2013-02-483537.
  • Motakis E, Guhl S, Ishizu Y, et al. Redefinition of the human mast cell transcriptome by deep-CAGE sequencing [published online ahead of print March 26, 2014].Blood. DOI: 10.1182/blood-2013-02-483792.
  • Schmidl C, Renner K, Peter K, et al. Transcription and enhancer profiling in human monocyte subsets [published online ahead of print March 26, 2014]. Blood. DOI: 10.1182/blood-2013-02-484188.
  • Schmidl C, Hansmann L, Lassmann T, et al. The enhancer and promoter landscape of human regulatory and conventional T-cell subpopulations [published online ahead of print March 26, 2014]. Blood. DOI: 10.1182/blood-2013-02-486944.

Related Stories

First comprehensive atlas of human gene activity released

March 26, 2014
A large international consortium of researchers has produced the first comprehensive, detailed map of the way genes work across the major cells and tissues of the human body. The findings describe the complex networks that ...

Stem cell study finds source of earliest blood cells during development

March 21, 2014
Hematopoietic stem cells are now routinely used to treat patients with cancers and other disorders of the blood and immune systems, but researchers knew little about the progenitor cells that give rise to them during embryonic ...

New maps for navigating the genome unveiled by scientists

March 26, 2014
Scientists have built the clearest picture yet of how our genetic material is regulated in order to make the human body work.

Immune cells regulate blood stem cells

February 21, 2014
Researchers in Bern, Germany, have discovered that, during a viral infection, immune cells control the blood stem cells in the bone marrow and therefore also the body's own defences. The findings could allow for new forms ...

Rare form of leukemia found to originate in stem cells

February 13, 2014
(Medical Xpress)—An international team of researchers working out of the University of Toronto has found that one type of rare leukemia appears to get its start in stem cells. In their paper published in the journal Nature, ...

Scientists identify key regulator controlling formation of blood-forming stem cells

September 26, 2013
Stem cell scientists have moved one step closer to producing blood-forming stem cells in a Petri dish by identifying a key regulator controlling their formation in the early embryo, shows research published online today in ...

Recommended for you

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.