Researchers discover disruptions in signaling pathways that enable colorectal cancer cells to form metastases

March 24, 2014
Healthy colorectal tissue is highly structured: Adhesion proteins like e-cadherins (red) hold the cells together, while EPHB receptors dictate where cell types like secretory cells are found in the tissue. Credit: Andreas Hecht

Researchers at the University of Freiburg have found switches that colorectal cancer cells use to migrate away from the primary tumor site and to invade neighboring tissue. This migration is the first step in metastasis, the process by which the cancer forms secondary tumors in other organs. Prof. Dr. Andreas Hecht and his research group at the Institute of Molecular Medicine of the University of Freiburg published their findings in the journal Proceedings of the National Academy of Sciences (PNAS).

The researchers hope to develop new diagnostic and therapeutic approaches for on the basis of the newly discovered signaling events. Hecht is a member of the Cluster of Excellence BIOSS Centre for Biological Signalling Studies as well as the collaborative research center "Control of Cell Motility in Morphogenesis, Cancer Invasion, and Metastasis."

Colorectal cancer is one of the most common forms of cancer worldwide. Principally, tumors in the intestine can be removed and initially the disease poses a limited threat. This changes dramatically when the tumor cells begin to spread beyond the gut and migrate via blood vessels into further tissues to form metastases. These secondary tumors are often difficult to find and to remove and can lead to organ failure or even death. In order to prevent a tumor from forming these dangerous metastases, it is necessary to understand how cancer cells manage to break the chains that hold in place in the body.

Proteins on the surface of healthy intestinal cells, so-called ephrin receptors, are responsible for instructing specific cell types like or which position to occupy in the tissue. They perform this task when activated through contact with adjacent cells. The ephrin receptors thereby inform cells about their neighborhood: Depending on whether the neighborhood suits the cell, it stays or moves on. In , it is known that ephrin receptors control a signaling pathway that prevents the cells from going astray. In order to break free from the primary tumor cell mass, the tumor cells shut down the production of the receptors, particularly that of the proteins EPHB2 and EPHB3. How they do this was previously unclear.

The researchers found DNA regions in the ephrin receptor genes that regulate the amount of EPHB2 and EPHB3 on cells. These so-called enhancers are switched off in intestinal tumor cells that form metastases. One of the causes is an error in regulatory networks of involving the protein Notch. The researchers also showed that the Notch signaling pathway is deactivated in tumors that have a poor prognosis. Determining whether the Notch signaling pathway and EPHB regulation are intact provides an indication as to how dangerous the tumor might be and could thus help doctors to make a more precise diagnosis.

Explore further: p53 cuts off invading cancer cells

More information: S. Jägle, K.Rönsch, S. Timme, H. Andrlová, M. Bertrand, M. Jäger, A.. Proske, M. Schrempp, A. Yousaf, T. Michoel, R. Zeiser, M. Werner, S. Lassmann, and A. Hecht; Silencing of the EPHB3 tumor-suppressor gene in human colorectal cancer through decommissioning of a transcriptional enhancer PNAS 2014 ; March 18, 2014, DOI: 10.1073/pnas.1314523111

Related Stories

p53 cuts off invading cancer cells

March 24, 2014
The tumor suppressor p53 does all it can to prevent oncogenes from transforming normal cells into tumor cells by killing defective cells or causing them to become inactive. Sometimes oncogenes manage to initiate tumor development ...

Integrin cell adhesion receptors are risky cancer drug targets

February 11, 2014
A possible cancer treatment strategy might in fact lead to increased metastasis in some cases. This finding from a team of LACDR researchers led by Erik Danen made the cover of the February 11 edition of Science Signaling.

Tumors form advance teams to ready lungs for spread of cancer

August 15, 2013
Cancer metastasis requires tumor cells to acquire properties that allow them to escape from the primary tumor site, travel to a distant place in the body, and form secondary tumors. But first, an advance team of molecules ...

Key molecule suppresses growth of cancerous liver tumors, study finds

February 13, 2013
(Medical Xpress)—A molecule already implicated in a number of diverse cellular functions can suppress the growth of tumors in the liver, a Mayo Clinic Cancer Center study has found. Its name is IQGAP1, and when the molecule ...

Study reveals mechanisms cancer cells use to establish metastatic brain tumors

February 27, 2014
New research from Memorial Sloan Kettering provides fresh insight into the biologic mechanisms that individual cancer cells use to metastasize to the brain. Published in the February 27 issue of Cell, the study found that ...

How tumor cells create their own pathways

July 10, 2012
Metastasis occurs when tumor cells "migrate" to other organs through the bloodstream. Scientists have now discovered the trick tumor cells use to invade tissue from the blood vessels: They produce signaling proteins to make ...

Recommended for you

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

Combining CAR T cells with existing immunotherapies may overcome resistance in glioblastomas

July 19, 2017
Genetically modified "hunter" T cells successfully migrated to and penetrated a deadly type of brain tumor known as glioblastoma (GBM) in a clinical trial of the new therapy, but the cells triggered an immunosuppressive tumor ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.