Key molecule suppresses growth of cancerous liver tumors, study finds

February 13, 2013

(Medical Xpress)—A molecule already implicated in a number of diverse cellular functions can suppress the growth of tumors in the liver, a Mayo Clinic Cancer Center study has found. Its name is IQGAP1, and when the molecule is active in the cells that surround a tumor cell, this "tumor microenvironment" becomes less hospitable to cancer growth. When the molecule is deficient, cancer thrives.

Results of the study appear in the . The findings give new insight into , the ability of a tumor to spread from its primary site to distant organs such as the brain, lung or liver. The results also point to new targets for preventing or treating liver metastases, the major cause of death from cancer.

" are intelligent—they talk to the cells in their surroundings to change the way they behave and make the environment supportive of . If we can disrupt the communication between the tumor cells and the tumor microenvironment, we can prevent tumor growth or metastasis in the liver," says senior study author Ningling Kang, Ph.D., a biochemist and at Mayo Clinic.

For certain solid tumors, about 70 to 90 percent of the tumor mass is made up of microenvironment—a complex mix of noncancerous cells, secreted extracellular matrix proteins, and tumor-promoting signaling molecules. This tumor microenvironment supports tumor growth and . Mechanisms regulating the tumor microenvironment are not well understood.

IQGAP1 controls the shape and movement of cells. To study the effects of this molecule on liver metastases, Dr. Kang and her colleagues implanted tumor cells into the livers of mice genetically engineered to lack the molecule.

The implanted tumor cells still had the molecule, but the cells that made up the tumor microenvironment did not. When researchers compared the progression of cancer between mutant and normal mice, they found that mice without the molecule developed more liver metastases. They also followed up these studies in mice by comparing samples of normal and cancerous liver tissues of colorectal cancer patients. They discovered that the levels of IQGAP1 were reduced in the tumor microenvironment of than in the normal tissue, suggesting that the tumor somehow communicates with its surroundings to tamp down the activity of this critical molecule.

This communication went both ways. Through a number of basic functional experiments, Dr. Kang and her colleagues showed that IQGAP1 interacts with and suppresses a powerful signaling molecule called TGF-beta receptor that tells normal cells that surround a tumor cell to become tumor-promoting cells.

"We think that tumor cells come into the liver and give orders to the signaling molecules in the surrounding normal cells to reduce the amount of IQGAP1, thereby creating a good for themselves," Dr. Kang says. "If we can understand exactly how they do this, then we may be able to uncover new therapeutic targets for liver metastasis."

Explore further: Ovarian cancer cells hijack surrounding tissues to enhance tumor growth

Related Stories

Ovarian cancer cells hijack surrounding tissues to enhance tumor growth

September 4, 2012
Tumor growth is dependent on interactions between cancer cells and adjacent normal tissue, or stroma. Stromal cells can stimulate the growth of tumor cells; however it is unclear if tumor cells can influence the stroma.

Study identifies gene critical to development and spread of lung cancer

April 24, 2012
A single gene that promotes initial development of the most common form of lung cancer and its lethal metastases has been identified by researchers at Mayo Clinic in Florida. Their study suggests other forms of cancer may ...

Tissue around tumor holds key to fighting triple negative breast cancer

September 19, 2012
A natural substance found in the surrounding tissue of a tumor may be a promising weapon to stop triple negative breast cancer from metastasizing.

Endotrophin links obesity to breast cancer progression

October 8, 2012
Fat cells (adipocytes) surround breast tumors and contribute to tumor growth by expressing factors that aid oncogenesis. Col6 is a protein that is highly expressed in adipocytes and its expression is further increased in ...

Recommended for you

Stem cell therapy attacks cancer by targeting unique tissue stiffness

July 26, 2017
A stem cell-based method created by University of California, Irvine scientists can selectively target and kill cancerous tissue while preventing some of the toxic side effects of chemotherapy by treating the disease in a ...

Understanding cell segregation mechanisms that help prevent cancer spread

July 26, 2017
Scientists have uncovered how cells are kept in the right place as the body develops, which may shed light on what causes invasive cancer cells to migrate.

Study uncovers potential 'silver bullet' for preventing and treating colon cancer

July 26, 2017
In preclinical experiments, researchers at VCU Massey Cancer Center have uncovered a new way in which colon cancer develops, as well as a potential "silver bullet" for preventing and treating it. The findings may extend to ...

Compound shows promise in treating melanoma

July 26, 2017
While past attempts to treat melanoma failed to meet expectations, an international team of researchers are hopeful that a compound they tested on both mice and on human cells in a petri dish takes a positive step toward ...

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.