Researcher uses DNA therapy in lab mice to improve cochlear implant functionality

March 24, 2014
Researcher uses DNA therapy in lab mice to improve cochlear implant functionality

One in a thousand children in the United States is deaf, and one in three adults will experience significant hearing loss after the age of 65. Whether the result of genetic or environmental factors, hearing loss costs billions of dollars in healthcare expenses every year, making the search for a cure critical.

Now a team of researchers led by Karen B. Avraham of the Department of Human Molecular Genetics and Biochemistry at Tel Aviv University's Sackler Faculty of Medicine and Yehoash Raphael of the Department of Otolaryngology–Head and Neck Surgery at University of Michigan's Kresge Hearing Research Institute have discovered that using DNA as a drug—commonly called —in laboratory mice may protect the inner ear nerve cells of humans suffering from certain types of progressive .

In the study recently published in the journal Hearing Research, doctoral student Shaked Shivatzki created a mouse population possessing the gene that produces the most prevalent form of hearing loss in humans: the mutated connexin 26 gene. Some 30 percent of American children born deaf have this form of the gene. Because of its prevalence and the inexpensive tests available to identify it, there is a great desire to find a cure or therapy to treat it.

"Regenerating" neurons

Prof. Avraham's team set out to prove that gene therapy could be used to preserve the inner ear nerve cells of the mice. Mice with the mutated connexin 26 gene exhibit deterioration of the nerve cells that send a sound signal to the brain. The researchers found that a protein growth factor used to protect and maintain neurons, otherwise known as brain-derived neurotrophic factor (BDNF), could be used to block this degeneration. They then engineered a virus that could be tolerated by the body without causing disease, and inserted the growth factor into the virus. Finally, they surgically injected the virus into the ears of the mice. This factor was able to "rescue" the neurons in the inner ear by blocking their degeneration.

"A wide spectrum of people are affected by hearing loss, and the way each person deals with it is highly variable," said Prof. Avraham. "That said, there is an almost unanimous interest in finding the genes responsible for hearing loss. We tried to figure out why the mouse was losing cells that enable it to hear. Why did it lose its hearing? The collaborative work allowed us to provide gene therapy to reverse the loss of nerve cells in the ears of these deaf mice."

Although this approach is short of improving hearing in these mice, it has important implications for the enhancement of sound perception with a cochlear implant, used by many people whose connexin 26 mutation has led to impaired hearing.

Embryonic hearing?

Inner ear nerve cells facilitate the optimal functioning of cochlear implants. Prof. Avraham's research suggests a possible new strategy for improving implant function, particularly in people whose hearing loss gets progressively worse with time, such as those with as well as those with the connexin gene mutation. Combining gene therapy with the implant could help to protect vital nerve cells, thus preserving and improving the performance of the implant.

More research remains. "Safety is the main question. And what about timing? Although over 80 percent of human and mouse are similar, which makes mice the perfect lab model for human hearing, there's still a big difference. Humans start hearing as embryos, but mice don't start to hear until two weeks after birth. So we wondered, do we need to start the corrective process in utero, in infants, or later in life?" said Prof. Avraham.

"Practically speaking, we are a long way off from treating hearing loss during embryogenesis. But we proved what we set out to do: that we can help preserve in the inner ears of the mouse," Prof. Avraham continued. "This already looks very promising."

The research team is currently working on finding better "vehicles" for the corrected gene, such as finding more suitable viruses to transport the injected gene to the appropriate place in the inner ear.

Explore further: Implanted hearing device approved

Related Stories

Implanted hearing device approved

March 20, 2014
(HealthDay)—The first implantable device for adults with a severe or profound form of a condition called "sensorineural hearing loss" has been approved by the U.S. Food and Drug Administration.

Researchers gain insight into protective mechanisms for hearing loss

September 17, 2013
Researchers from the Eaton-Peabody Laboratories of the Massachusetts Eye and Ear and Harvard Medical School have created a new mouse model in which by expressing a gene in the inner ear hair cells—the sensory cells that ...

Imbalanced hearing is more than a mild disability

March 12, 2014
Researchers at Washington University School of Medicine in St. Louis have received a five-year, $3 million grant from the National Institutes of Health (NIH) to study the effects of asymmetric hearing loss in adults and children.

Hearing loss clue uncovered

June 11, 2013
(Medical Xpress)—Researchers from the Department of Otolaryngology at the University of Melbourne and the Department of Biochemistry and Molecular Biology at Monash University have discovered how hearing loss in humans ...

Gene therapy holds promise for reversing congenital hearing loss

July 25, 2012
A new gene therapy approach can reverse hearing loss caused by a genetic defect in a mouse model of congenital deafness, according to a preclinical study published by Cell Press in the July 26 issue of the journal Neuron. ...

New discovery paves the way for medicine for people with hearing disabilities

February 27, 2014
Researchers at Karolinska Institutet in Sweden have identified a biological circadian clock in the hearing organ, the cochlea. This circadian clock controls how well hearing damage may heal and opens up a new way of treating ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.