In mapping feat, scientists pinpoint neurons where select memories grow

March 27, 2014
This is a group of neurons. Credit: EPFL/Human Brain Project

Memories are difficult to produce, often fragile, and dependent on any number of factors—including changes to various types of nerves. In the common fruit fly—a scientific doppelganger used to study human memory formation—these changes take place in multiple parts of the insect brain.

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have been able to pinpoint a handful of neurons where certain types of memory formation occur, a mapping feat that one day could help scientists predict disease-damaged neurons in humans with the same specificity.

"What we found is that while a lot of the neurons will respond to sensory stimuli, only a certain subclass of neurons actually encodes the memory," said Seth Tomchik, a TSRI biologist who led the study, which was published March 27, 2014, online ahead of print by the journal Current Biology.

The researchers examined a type of neuron called —which respond to dopamine, a well-known neurotransmitter—and are involved in shaping diverse behaviors, including learning, motivation, addiction and obesity.

In the study, the scientists followed the stimulation of a large number of these neurons when an odor was paired with an aversive event such as a mild electric shock. The scientists then used imaging technology to follow changes in the brains of live flies, mapping the activation patterns of signaling molecules within the neurons and observing learning-related plasticity—in which neurons change and develop memory traces.

The scientists found that the neurons that did encode memories responded to a cellular signaling messenger known as cAMP (cyclic adenosine monophosphate) that is vital for many biological processes. cAMP is involved in a number of psychological disorders such as bipolar disorder and schizophrenia, and its dysregulation may underlie some cognitive symptoms of Alzheimer's disease and Neurofibramatosis I.

In fact, the study pointed to a specific location in the brain—a particular lobe with a region known as the mushroom body—where the neurons appear to be particularly sensitive to elevated amounts of cAMP.

According to Tomchik, that's an important finding in terms of human memory because olfactory memory formation in the fruit fly is very similar to formation.

"We have a good model in these two classes of , one that encodes and one that doesn't," he said. "Now we know exactly where the should be and where to look to see how disease may disrupt it."

Tamara Boto, the first author of the study and a member of Tomchik's laboratory, added, "We know where, but we don't yet know the mechanism of why only these subsets are affected. That's our next job—to figure that out."

Explore further: Study shows how brain cells shape temperature preferences

More information: In addition to Tomchik and Boto, authors of the study, "Dopaminergic Modulation of Camp Drives Nonlinear Plasticity Across the Drosophila Mushroom Body Lobes," are Thierry Louis and Kantiya Jindachomthong of TSRI; and Kees Jalink of The Netherlands Cancer Institute, Amsterdam.

Related Stories

Study shows how brain cells shape temperature preferences

January 29, 2013
While the wooly musk ox may like it cold, fruit flies definitely do not. They like it hot, or at least warm. In fact, their preferred optimum temperature is very similar to that of humans—76 degrees F.

Scientists shed light on age-related memory loss and possible treatments

April 2, 2012
Scientists from the Florida campus of The Scripps Research Institute have shown in animal models that the loss of memory that comes with aging is not necessarily a permanent thing.

New clues to memory formation may help better treat dementia

November 27, 2013
Do fruit flies hold the key to treating dementia? Researchers at the University of Houston (UH) have taken a significant step forward in unraveling the mechanisms of Pavlovian conditioning. Their work will help them understand ...

Scientists pinpoint proteins vital to long-term memory

September 12, 2013
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have found a group of proteins essential to the formation of long-term memories.

Scientists identify mechanism of long-term memory

April 13, 2011
Using advanced imaging technology, scientists from the Florida campus of The Scripps Research Institute have identified a change in chemical influx into a specific set of neurons in the common fruit fly that is fundamental ...

Lack of coronin 1 protein causes learning deficits and aggressive behavior

March 26, 2014
Learning and memory relies on the proper processing of signals that stimulate neuronal cells within the brain. Researchers at the Biozentrum of the University of Basel, together with an international team of scientists, has ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.