Major breakthrough in developing new cancer drugs: Capturing leukemic stem cells

March 18, 2014
Major breakthrough in developing new cancer drugs: Capturing leukemic stem cells
Top: This image shows acute myeloid leukemia cells presenting anomalies in standard growth conditions. Below: This image shows acute myeloid leukemia cells preserving their leukemic cell features following in vitro culture with the two chemical molecules referred to in the study -- Pabst C, Krosl J, Fares I, Boucher G, Ruel R, Marinier A, Lemieux S, Hébert J, Sauvageau G. Identification of small molecules that support human leukemia stem cell activity ex vivo. Nature Methods. 2014-02-23. Credit: Institute for Research in Immunology and Cancer at the Université de Montréal

The Institute for Research in Immunology and Cancer (IRIC) at the Université de Montréal (UdeM), in collaboration with the Maisonneuve-Rosemont Hospital's Quebec Leukemia Cell Bank, recently achieved a significant breakthrough thanks to the laboratory growth of leukemic stem cells, which will speed up the development of new cancer drugs.

In a recent study published in Nature Methods, the scientists involved describe how they succeeded in identifying two new chemical compounds that allow to maintain leukemic stem cells in culture when these are grown outside the body.

This important advance opens the way to the identification of new drugs to fight acute myeloid leukemia, one of the most aggressive forms of blood cancer.

The ability to grow leukemic stem cells in culture is a major breakthrough. The next step is to study the molecular mechanisms that regulate the survival and proliferation of as well as the resistance to cancer drugs.

This study is the work of the "Leucégène" research group. This group is co-directed by Dr. Guy Sauvageau, and principal investigator at IRIC as well as professor in the Department of Medicine at the UdeM; by Dr. Josée Hébert, director of the Quebec Leukemia Cell Bank, hematologist at Maisonneuve-Rosemont Hospital and professor in the Department of Medicine at the UdeM; and by Sébastien Lemieux, principal investigator at IRIC. The first author of the study is Caroline Pabst, a postdoctoral fellow at IRIC and associate of the "Leucégène" research group.

"This research breakthrough demonstrates the advantage of working in a multidisciplinary team like the 'Leucégène' research group," stated Drs. Sauvageau and Hébert. "Access to cells of leukemia patients and to IRIC's state-of-the-art facilities are also key factors in pursuing ground-breaking research."

Background to the study

Stem cells located in the bone marrow are responsible for the production of . Unfortunately, deregulation of those cells often produces disastrous consequences when one of them develops mutations that transform it into a malignant cell called "leukemic". The result is an abnormal proliferation of blood cells and the development of leukemia. Leukemic stem cells are also one of the likely causes of patient relapse because they are especially resistant to cancer treatments.

The major obstacle before this discovery was growing stem cells and keeping them intact in vitro, because they quickly lost their character. As a result, it was very difficult to effectively study the multiplication of cells that cause leukemia.

To get around that difficulty, the team of researchers studied leukemic from patients with acute myeloid leukemia, obtained from the Quebec Leukemia Cell Bank. After thousands of tests using various chemicals, they identified two new chemical compounds that, when added to the culture medium, can keep functional human alive for at least seven days in vitro.

Made up of researchers from the Université de Montréal, the Université Laval and McGill University, the "Leucégène" research group is concerned with the identification of the genes and the factors that determine the chances of recovery from , and with the discovery of new therapies for this cancer.

Explore further: A promising new approach for treating leukemia discovered

Related Stories

A promising new approach for treating leukemia discovered

February 13, 2014
A group of researchers at the Institute for Research in Immunology and Cancer (IRIC) of Université de Montréal discovered a promising new approach to treating leukemia by disarming a gene that is responsible for tumor progression. ...

Rare form of leukemia found to originate in stem cells

February 13, 2014
(Medical Xpress)—An international team of researchers working out of the University of Toronto has found that one type of rare leukemia appears to get its start in stem cells. In their paper published in the journal Nature, ...

Common mutation is culprit in acute leukemia relapse

March 6, 2014
Harvard stem cell scientists have identified a mutation in human cases of acute lymphoblastic leukemia that likely drives relapse. The research, published in Cancer Cell, could translate into improved patient care strategies ...

Cancer researchers discover pre-leukemic stem cell at root of AML, relapse

February 12, 2014
Feb. 12, 2014) – Cancer researchers led by stem cell scientist Dr. John Dick have discovered a pre-leukemic stem cell that may be the first step in initiating disease and also the culprit that evades therapy and triggers ...

Two-pronged approach successfully targets DNA synthesis in leukemic cells

February 24, 2014
A novel two-pronged strategy targeting DNA synthesis can treat leukemia in mice, according to a study in The Journal of Experimental Medicine.

Researchers discover how a mutated protein outwits evolution and fuels leukemia

June 20, 2013
Scientists have discovered the survival secret to a genetic mutation that stokes leukemia cells, solving an evolutionary riddle and paving the way to a highly targeted therapy for leukemia. In a paper published today in Cell, ...

Recommended for you

Cancer-death button gets jammed by gut bacterium

July 27, 2017
Researchers at Michigan Medicine and in China showed that a type of bacterium is associated with the recurrence of colorectal cancer and poor outcomes. They found that Fusobacterium nucleatum in the gut can stop chemotherapy ...

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Long-sought mechanism of metastasis is discovered in pancreatic cancer

July 27, 2017
Cells, just like people, have memories. They retain molecular markers that at the beginning of their existence helped guide their development. Cells that become cancerous may be making use of these early memories to power ...

Blocking the back-door that cancer cells use to escape death by radiotherapy

July 27, 2017
A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Glowing tumor technology helps surgeons remove hidden cancer cells

July 27, 2017
Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients when combining intraoperative molecular imaging (IMI) - through the use of a contrast agent that makes tumor cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.