Researchers use computers to 'see' neurons to better understand brain function

March 6, 2014, Indiana University-Purdue University Indianapolis School of Science
Indiana University-Purdue University Indianapolis' Gavriil Tsechpenakis, Ph.D., assistant professor of computer science mentors local high school student Tiange (Tony) Qu. Credit: School of Science at Indiana University-Purdue University Indianapolis (IUPUI)

A study conducted by local high school students and faculty from the Department of Computer and Information Science in the School of Science at Indiana University-Purdue University Indianapolis reveals new information about the motor circuits of the brain that may one day help those developing therapies to treat conditions such as stroke, schizophrenia, spinal cord injury or Alzheimer's disease.

"MRI and CAT scans of the human can tell us many things about the structure of this most complicated of organs, formed of trillions of neurons and the synapses via which they communicate. But we are a long way away from having imaging techniques that can show single neurons in a complex brain like the ," said Gavriil Tsechpenakis, Ph.D., assistant professor of computer science in the School of Science at IUPUI.

"But using the tools of artificial intelligence, specifically computer vision and image processing, we are able to visualize and process actual neurons of model organisms. Our work in the brain of a model organism—the fruit fly—will help us and other researchers move forward to more complex organisms with the ultimate goal of reconstructing the human central nervous system to gain insight into what goes wrong at the cellular level when devastating disorders of the brain and occur. This understanding may ultimately inform the treatment of these conditions," said Tsechpenakis.

In this study, which processed images and reconstructed neuronal motor circuitry in the brain, the researchers, who included two Indianapolis —Rachel Stephens and Tiange (Tony) Qu—collected and analyzed data on minute structures over various developmental stages, efforts linking neuroscience and computer science.

"Both high school students who worked on this study performed neuroscience and computation efforts similar to that conducted elsewhere by graduate students. It was impressive to see what sophisticated and key work they could—with mentoring—do," said Tsechpenakis.

Qu said the work was initially rather scary and intimidating but that he rapidly grew to appreciate the opportunity to work in the School of Science lab. "Unlike , we were not told how to get from point A to point B. Dr. Tsechpenakis explained what point A and B were and taught us how to figure out how to get from A to B."

Qu, a 17-year-old senior at Ben Davis High School, now sees neuroscience as a potential college major with biomedical research as an eventual career goal. He continues to work in the lab after school focusing on change over time in fruit fly larvae motor neurons.

Stephens, a senior at North Central High School, said she enjoyed the collaborative nature of the research, with computer scientists and life scientists working together on a problem.

"Dr. Tsechpenakis made it clear to us that different perspectives are necessary, and the ability to think about a problem is more valuable than the education and training you've had," she said. "Before I joined the lab I hadn't really thought about how could help heal." The 17-year-old plans a pre-med major in college and a career as a physician.

Explore further: Brainstem discovered as important relay site after stroke

Related Stories

Brainstem discovered as important relay site after stroke

February 25, 2014
Around 16,000 people in Switzerland suffer a stroke every year. Often the result of a sudden occlusion of a vessel supplying the brain, it is the most frequent live-threatening neurological disorder. In most cases, it has ...

Finding could explain age-related decline in motor function

February 7, 2014
Scientists from the School of Medicine at The University of Texas Health Science Center at San Antonio have found a clue as to why muscles weaken with age. In a study published Feb. 5 in The Journal of Neuroscience, they ...

Can a virtual brain replace lab rats?

February 14, 2014
Testing the effects of drugs on a simulated brain could lead to breakthrough treatments for neurological disorders such as Parkinson's, Huntington's and Alzheimer's disease.

Researchers generate new neurons in brains, spinal cords of living adult mammals

February 25, 2014
UT Southwestern Medical Center researchers created new nerve cells in the brains and spinal cords of living mammals without the need for stem cell transplants to replenish lost cells.

Neon exposes hidden ALS cells

April 30, 2013
A small group of elusive neurons in the brain's cortex play a big role in ALS (amyotrophic lateral sclerosis), a swift and fatal neurodegenerative disease that paralyzes its victims. But the neurons have always been difficult ...

How neurons control fine motor behavior of the arm

January 31, 2014
Motor commands issued by the brain to activate arm muscles take two different routes. As the research group led by Professor Silvia Arber at the Basel University Biozentrum and the Friedrich Miescher Institute for Biomedical ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.