For neurons in the brain, identity can be used to predict location

March 24, 2014, Cold Spring Harbor Laboratory
Scientists at Cold Spring Harbor Laboratory have developed a new mathematical model that makes predictions about where different types are neurons are located throughout the brain. Here are 'heat maps' of the brain, made using the mathematical model to predict the distribution of different neurons. Each line across represents one neuronal type, and different sections of the brain are shown in each column. Color indicates the likelihood of a particular neuronal type appearing in that area of the brain (white is most likely and black is least). Credit: Partha Mitra, Cold Spring Harbor Laboratory

Throughout the world, there are many different types of people, and their identity can tell a lot about where they live. The type of job they work, the kind of car they drive, and the foods they eat can all be used to predict the country, the state, or maybe even the city a person lives in.

The brain is no different. There are many types of neurons, defined largely by the patterns of genes they use, and they "live" in numerous distinct brain regions. But researchers do not yet have a comprehensive understanding of these neuronal types and how they are distributed in the brain. Today, a team of scientists at Cold Spring Harbor Laboratory (CSHL) led by Professor Partha Mitra describes a new that combines large data sets to predict where different types of cells are located within the brain, based on their molecular identity.

Scientists at the Allen Institute for Brain Science in Seattle are using microscopy to directly observe gene activity, one at a time, in razor-thin slices of tissue. This approach yields brain maps that are collectively known as the Allen Mouse Brain Atlas. Each individual map shows where a single gene is expressed in the brain. When multiple maps are overlaid, patterns begin to emerge that show how different regions of the brain activate specific and often discrete complements of genes. These patterns are known as "co-expression" profiles.

Elsewhere, other research groups have taken a complementary approach, harvesting a single type of neuron from the brain and profiling all of the genes that are expressed by that cell. But this data lacks the spatial component of the atlas assembled by the Allen Brain Institute.

Mitra and postdoctoral fellow Pascal Grange, Ph.D., set out to integrate these two kinds of datasets. They devised a mathematical model that does just this. "Our model is simple," says Mitra, "but it has predictive power. If the of a neuronal type is measured, then the model predicts where in the brain that type of neuron can be found."

The significance of the new model, according to Grange, is that "it enables us to now have a biological understanding of the patterns, the co-expression profiles, seen in the Allen Gene Expression Atlas of the Mouse Brain."

As scientists continue to generate larger datasets of gene activation for neurons, this model will allow them to draw an increasingly accurate map of their distribution in the . The eventual goal is to gain a better understanding of how signaling between different types of neurons controls memory and cognition.

Explore further: Allen Institute for Brain Science announces new data release on Allen Brain Atlas resources

More information: "Cell-type–based model explaining coexpression patterns of genes in the brain" appears online in PNAS on March 24, 2014: www.pnas.org/cgi/doi/10.1073/pnas.1312098111

Related Stories

Allen Institute for Brain Science announces new data release on Allen Brain Atlas resources

December 20, 2013
The Allen Institute for Brain Science recently announced major updates to the online public resources available through the Allen Brain Atlas data portal. The updates include feature enhancements and data additions to four ...

Data release from the Allen Institute for Brain Science expands online atlas offerings

June 7, 2012
The Allen Institute for Brain Science announced today its latest public data release, enhancing online resources available via the Allen Brain Atlas data portal and expanding its application programming interface (API).

Study describes first maps of neural activity in behaving zebrafish

March 19, 2014
In a study published today in the scientific journal Neuron, neuroscientists at the Champalimaud Foundation, in collaboration with neuroscientists from Harvard University, describe the first activity maps at the resolution ...

Analysis of 26 networked autism genes suggests functional role in the cerebellum

July 25, 2013
A team of scientists has obtained intriguing insights into two groups of autism candidate genes in the mammalian brain that new evidence suggests are functionally and spatially related. The newly published analysis identifies ...

Sugar-burning in the adult human brain is associated with continued growth, and remodeling

January 7, 2014
Although brain growth slows as individuals age, some regions of the brain continue to develop for longer than others, creating new connections and remodeling existing circuitry. How this happens is a key question in neuroscience, ...

Mouse brain atlas maps neural networks to reveal how brain regions interact

February 27, 2014
Different brain regions must communicate with each other to control complex thoughts and behaviors, but relatively little is known about how these areas organize into broad neuronal networks. In a study published by Cell ...

Recommended for you

Electrical implant reduces 'invisible' symptoms of man's spinal cord injury

February 19, 2018
An experimental treatment that sends electrical currents through the spinal cord has improved "invisible" yet debilitating side effects for a B.C. man with a spinal cord injury.

Lab-grown human cerebellar cells yield clues to autism

February 16, 2018
Increasing evidence has linked autism spectrum disorder (ASD) with dysfunction of the brain's cerebellum, but the details have been unclear. In a new study, researchers at Boston Children's Hospital used stem cell technology ...

Fragile X syndrome neurons can be restored, study shows

February 16, 2018
Fragile X syndrome is the most frequent cause of intellectual disability in males, affecting one out of every 3,600 boys born. The syndrome can also cause autistic traits, such as social and communication deficits, as well ...

Brain-machine interface study suggests how brains prepare for action

February 16, 2018
Somewhere right now in Pyeongchang, South Korea, an Olympic skier is thinking through the twists and spins she'll make in the aerial competition, a speed skater is visualizing how he'll sneak past a competitor on the inside ...

Humans blink strategically in response to environmental demands

February 16, 2018
If a brief event in our surroundings is about to happen, it is probably better not to blink during that moment. A team of researchers at the Centre for Cognitive Science from Technische Universität Darmstadt published a ...

Model for producing brain's 'helper cells' could lead to treatments for Alzheimer's

February 16, 2018
A Swedish research team has published a new protocol with the potential for industrial-scale production of the brain helper cells known as astrocytes. Their work could help medical science develop treatments for such diseases ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.