'Chaperone' compounds offer new approach to Alzheimer's treatment

April 20, 2014
Researchers have identified a new class of compounds -- pharmacologic chaperones -- that can stabilize the retromer protein complex (the blue and orange structure shows part of the complex). Retromer plays a vital role in keeping amyloid precursor from being cleaved and producing the toxic byproduct amyloid beta, which contributes to the development of Alzheimer's. The study found that when the chaperone named R55 (the multicolored molecule) was added to neurons in cell culture, it bound to and stabilized retromer, increasing retromer levels and lowering amyloid-beta levels. Credit: Nature Chemical Biology/ Scott A. Small, MD/Columbia University Medical Center

A team of researchers from Columbia University Medical Center (CUMC), Weill Cornell Medical College, and Brandeis University has devised a wholly new approach to the treatment of Alzheimer's disease involving the so-called retromer protein complex. Retromer plays a vital role in neurons, steering amyloid precursor protein (APP) away from a region of the cell where APP is cleaved, creating the potentially toxic byproduct amyloid-beta, which is thought to contribute to the development of Alzheimer's.

Using computer-based virtual screening, the researchers identified a new class of compounds, called pharmacologic chaperones, that can significantly increase retromer levels and decrease amyloid-beta levels in cultured hippocampal neurons, without apparent cell toxicity. The study was published today in the online edition of the journal Nature Chemical Biology.

"Our findings identify a novel class of pharmacologic agents that are designed to treat neurologic disease by targeting a defect in cell biology, rather than a defect in molecular biology," said Scott Small, MD, the Boris and Rose Katz Professor of Neurology, Director of the Alzheimer's Disease Research Center in the Taub Institute for Research on Alzheimer's Disease and the Aging Brain at CUMC, and a senior author of the paper. "This approach may prove to be safer and more effective than conventional treatments for neurologic disease, which typically target single proteins."

In 2005, Dr. Small and his colleagues showed that retromer is deficient in the brains of patients with Alzheimer's disease. In cultured neurons, they showed that reducing retromer levels raised amyloid-beta levels, while increasing retromer levels had the opposite effect. Three years later, he showed that reducing retromer had the same effect in animal models, and that these changes led to Alzheimer's-like symptoms. Retromer abnormalities have also been observed in Parkinson's disease.

In discussions at a scientific meeting, Dr. Small and co-senior authors Gregory A. Petsko, DPhil, Arthur J. Mahon Professor of Neurology and Neuroscience in the Feil Family Brain and Mind Research Institute and Director of the Helen and Robert Appel Alzheimer's Disease Research Institute at Weill Cornell Medical College, and Dagmar Ringe, PhD, Harold and Bernice Davis Professor in the Departments of Biochemistry and Chemistry and in the Rosenstiel Basic Medical Sciences Research Center at Brandeis University, began wondering if there was a way to stabilize retromer (that is, prevent it from degrading) and bolster its function. "The idea that it would be beneficial to protect a protein's structure is one that nature figured out a long time ago," said Dr. Petsko. "We're just learning how to do that pharmacologically."

Other researchers had already determined retromer's three-dimensional structure. "Our challenge was to find small molecules—or pharmacologic chaperones—that could bind to retromer's weak point and stabilize the whole protein complex," said Dr. Ringe.

This was accomplished through computerized virtual, or in silico, screening of known chemical compounds, simulating how the compounds might dock with the retromer . (In conventional screening, compounds are physically tested to see whether they interact with the intended target, a costlier and lengthier process.) The screening identified 100 potential retromer-stabilizing candidates, 24 of which showed particular promise. Of those, one compound, called R55, was found to significantly increase the stability of retromer when the complex was subjected to heat stress.

The researchers then looked at how R55 affected neurons of the hippocampus, a key brain structure involved in learning and memory. "One concern was that this compound would be toxic," said Dr. Diego Berman, assistant professor of clinical pathology and cell biology at CUMC and a lead author. "But R55 was found to be relatively non-toxic in mouse neurons in cell culture."

More important, a subsequent experiment showed that the compound significantly increased retromer levels and decreased amyloid-beta levels in cultured neurons taken from healthy mice and from a mouse model of Alzheimer's. The researchers are currently testing the clinical effects of R55 in the actual mouse model .

"The odds that this particular compound will pan out are low, but the paper provides a proof of principle for the efficacy of retromer pharmacologic chaperones," said Dr. Petsko. "While we're testing R55, we will be developing chemical analogs in the hope of finding compounds that are more effective."

Explore further: Study points to possible cause of, and treatment for, non-familial Parkinson's

More information: "Pharmacological chaperones stabilize retromer to limit APP processing," Nature Chemical Biology, 2014. DOI: 10.1038/nchembio.1508

Related Stories

Study points to possible cause of, and treatment for, non-familial Parkinson's

February 6, 2013
Columbia University Medical Center (CUMC) researchers have identified a protein trafficking defect within brain cells that may underlie common non-familial forms of Parkinson's disease. The defect is at a point of convergence ...

Poor recycling of BACE1 enzyme could promote Alzheimer's disease

November 21, 2011
Sluggish recycling of a protein-slicing enzyme could promote Alzheimer's disease, according to a study published online on November 21 in The Journal of Cell Biology.

Faulty internal recycling by brain's trash collectors may contribute to Alzheimer's

September 4, 2013
A defective trash-disposal system in the brain's resident immune cells may be a major contributor to neurodegenerative disease, a scientific team from the Stanford University School of Medicine has found.

A mutation in a protein-sorting gene is linked with Parkinson's disease

July 14, 2011
Parkinson disease (PD) is a devastating incurable disease in which degeneration of dopamine neurons in the brainstem leads to tremors and problems with movement and coordination. An increasing proportion of patients appear ...

Study identifies protein that contributes to cognitive decline in Alzheimer's

June 25, 2013
Researchers at Columbia University Medical Center (CUMC) have demonstrated that a protein called caspase-2 is a key regulator of a signaling pathway that leads to cognitive decline in Alzheimer's disease. The findings, made ...

Key cellular auto-cleaning mechanism mediates the formation of plaques in Alzheimer's brain

October 3, 2013
Autophagy, a key cellular auto-cleaning mechanism, mediates the formation of amyloid beta plaques, one of the hallmarks of Alzheimer's disease. It might be a potential drug target for the treatment of the disease, concludes ...

Recommended for you

Lifestyle changes to stave off Alzheimer's? Hints, no proof

July 20, 2017
There are no proven ways to stave off Alzheimer's, but a new report raises the prospect that avoiding nine key risks starting in childhood just might delay or even prevent about a third of dementia cases around the world.

Blood test identifies key Alzheimer's marker

July 19, 2017
A new study led by researchers at Washington University School of Medicine in St. Louis suggests that measures of amyloid beta in the blood have the potential to help identify people with altered levels of amyloid in their ...

Steering an enzyme's 'scissors' shows potential for stopping Alzheimer's disease

July 19, 2017
The old real estate adage about "location, location, location" might also apply to the biochemical genesis of Alzheimer's disease, according to new research from the University of British Columbia.

Brain scans may change care for some people with memory loss

July 19, 2017
Does it really take an expensive brain scan to diagnose Alzheimer's? Not everybody needs one but new research suggests that for a surprising number of patients whose memory problems are hard to pin down, PET scans may lead ...

Can poor sleep boost odds for Alzheimer's?

July 18, 2017
(HealthDay)— Breathing problems during sleep may signal an increased risk for Alzheimer's disease, a trio of studies suggests.

Hearing is believing: Speech may be a clue to mental decline

July 17, 2017
Your speech may, um, help reveal if you're uh ... developing thinking problems. More pauses, filler words and other verbal changes might be an early sign of mental decline, which can lead to Alzheimer's disease, a study suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.