Researchers generate immunity against tumor vessel protein

April 25, 2014

Sometimes a full-on assault isn't the best approach when dealing with a powerful enemy. A more effective approach, in the long run, may be to target the support system replenishing the supplies that keep your foe strong and ready for battle. A group of researchers from the Abramson Cancer Center and the Perelman School of Medicine at the University of Pennsylvania is pursuing this strategy by employing a novel DNA vaccine to kill cancer, not by attacking tumor cells, but targeting the blood vessels that keep them alive. The vaccine also indirectly creates an immune response to the tumor itself, amplifying the attack by a phenomenon called epitope spreading. The results of the study were published this month in the Journal of Clinical Investigation.

Previous studies have targeted (the formation of new blood vessels that feed the ). However, this approach can also interfere with normal processes involved in wound healing and development. Penn researchers avoided this pitfall by designing a DNA that specifically targets TEM1 (tumor endothelial marker 1), a protein that is overexpressed in tumors and poorly expressed in normal tissues.

"We demonstrated that by targeting TEM1, our vaccine can decrease tumor vascularization, increase hypoxia of the tumor and reduce tumor growth," says Andrea Facciabene, PhD, research assistant professor of Obstetrics and Gynecology and a faculty member in the Ovarian Cancer Research Center at Penn Medicine. "Our results confirm that we were directly targeting the tumor vasculature and also indirectly killing tumor cells through epitope spreading."

The Penn team injected mice with a DNA fusion vaccine called TEM1-TT, created by fusing TEM1 complementary DNA with a fragment of the tetanus toxoid (TT). In mouse models of three types (breast, colon, and cervical), tumor formation was delayed or prevented in mice vaccinated with the TEM1-TT DNA vaccine. Specifically, they found that the mouse tumors had suppressed growth, decreased tumor vessel formation, and increased infiltration of immune cells into tumors.

The researchers found that the DNA vaccine, after killing the endothelial cells that make up the tumor vessels (vasculature), also resulted in epitope spreading, meaning that the immune cells of the mice gathered pieces of dead tumor cells (due to hypoxia) to create a secondary immune response against the tumor itself. The vaccine induced specific T cells to fight other tumor cells expression other proteins, in addition to TEM1, thus increasing its therapeutic efficacy.

The new DNA vaccine approach to fight cancer is showing great potential compared to previous studies that focused on tumor cells rather than the blood vessels that allow tumor cells to thrive.

"Until now there have been a lot of clinical trials using DNA vaccines to target tumors themselves, but unfortunately the results have been disappointing," Facciabene notes. "This is a different approach which should heighten optimism for cancer vaccines in general. Moreover, based on what we've seen in our mouse studies, this vaccine doesn't seem to show any significant side effects."

The prevalence of TEM1 in a wide range of tumor types coupled with its scarcity in normal vessels makes it a suitable target both for a prophylactic defense against cancer and a complement to other therapies such as radiotherapy and chemotherapy. "Using this vaccine simultaneously with radiation may eventually have a double synergy," Facciabene says. "Both treatments affect the endothelium, radiotherapy could help the phenomenon of epitope spreading induced by the TEM1-TT vaccine." In addition to ongoing pre-clinical work with human TEM1, Facciabene and colleagues are planning to move on to Phase I human clinical trials.

The authors suggest that TEM1 may also be an excellent target as a prophylactic cancer vaccine for individuals that have a high risk of developing ovarian cancer, such as carriers of the BRCA1/2 mutations, predominant in breast and ovarian cancer. Research to develop those types of strategies is a key goal of Penn's Basser Research Center for BRCA. As a bonafide vaccine, TEM-TT DNA vaccine generates a memory immune response, which Facciabene says is an ideal attribute for high risk populations.

Explore further: Cancer vaccine could use immune system to fight tumors

More information: Paper: www.jci.org/articles/view/67382

Related Stories

Cancer vaccine could use immune system to fight tumors

February 27, 2014
Cincinnati Cancer Center (CCC) and UC Cancer Institute researchers have found that a vaccine, targeting tumors that produce a certain protein and receptor responsible for communication between cells and the body's immune ...

Novel cancer vaccine holds promise against ovarian cancer, mesothelioma

March 5, 2014
A novel approach to cancer immunotherapy – strategies designed to induce the immune system to attack cancer cells – may provide a new and cost-effective weapon against some of the most deadly tumors, including ovarian ...

Radiation therapy and cancer vaccines: Timing is everything

March 24, 2014
Radiation therapy fights cancer in more ways than one. Not only does it force cancer cells to self-destruct, but several studies demonstrate that it also activates the immune system to attack tumor cells. This activation ...

The immune system's redesigned role in fighting cancerous tumors

March 12, 2014
Researchers in the Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute eradicated solid tumors in laboratory mice using a novel combination of two targeted agents. These two synergistic therapies stimulate an immune ...

Protein serves as a natural boost for immune system fight against tumors

January 30, 2014
Substances called adjuvants that enhance the body's immune response are critical to getting the most out of vaccines. These boosters stimulate the regular production of antibodies—caused by foreign substances in the body—toxins, ...

Recommended for you

Poliovirus therapy induces immune responses against cancer

September 20, 2017
An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells ...

Scientists restore tumor-fighting structure to mutated breast cancer proteins

September 20, 2017
Scientists at the Virginia Tech Carilion Research Institute have successfully determined the full architecture of the breast cancer susceptibility protein (BRCA1) for the first time. This three-dimensional information provides ...

Researchers identify new target, develop new drug for cancer therapies

September 20, 2017
Opening up a new pathway to fight cancer, researchers at the University of Pennsylvania have found a way to target an enzyme that is crucial to tumor growth while also blocking the mechanism that has made past attempts to ...

Brain cancer growth halted by absence of protein, study finds

September 20, 2017
The growth of certain aggressive brain tumors can be halted by cutting off their access to a signaling molecule produced by the brain's nerve cells, according to a new study by researchers at the Stanford University School ...

New clinical trial explores combining immunotherapy and radiation for sarcoma patients

September 20, 2017
University of Maryland School of Medicine researchers are investigating a new approach to treat high-risk soft-tissue sarcomas by combining two immunotherapy drugs with radiation therapy to stimulate the immune system to ...

Targeted antibiotic use may help cure chronic myeloid leukaemia

September 19, 2017
The antibiotic tigecycline, when used in combination with current treatment, may hold the key to eradicating chronic myeloid leukaemia (CML) cells, according to new research.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.