Solution to platelet 'puzzle' uncovers blood disorder link

April 7, 2014
Dr. Ashley Ng and colleagues from the Walter and Eliza Hall Institute in Melbourne, Australia, have solved a puzzle about how blood-making hormones stimulate the bone marrow to make platelets. Credit: Walter and Eliza Hall Institute of Medical Research

Melbourne researchers have solved a puzzle as to how an essential blood-making hormone stimulates production of the blood clotting cells known as platelets.

Platelets are essential for stopping bleeding and are produced by small fragments breaking off their 'parent' cells, called megakaryocytes.

The discovery, made by scientists at the Walter and Eliza Hall Institute, identified how cells could become overstimulated and produce too many . In blood diseases such as essential thrombocythemia, too many platelets can lead to clogging of the blood vessels, causing clots, heart attack or strokes.

Institute researchers Dr Ashley Ng, Dr Maria Kauppi, Professor Warren Alexander, Professor Don Metcalf and colleagues led the research, published today in the journal Proceedings of the National Academy of Sciences.

Dr Ng said the hormone thrombopoietin was responsible for signalling to produce platelets but, until now, researchers did not know precisely which cells responded to its signals. By studying the receptor for thrombopoietin, called Mpl, on in the bone marrow, the team pinpointed the cells involved in making platelets after thrombopoietin stimulation, and made an unexpected discovery.

"Thrombopoietin did not directly stimulate the platelet's 'parent' cells, the megakaryocytes, to make more platelets," Dr Ng said. "Thrombopoietin signals actually acted on stem cells and progenitor cells, several generations back."

To reach this conclusion, the researchers genetically removed the Mpl receptors from megakaryocytes and platelets. Dr Ng said the result was very surprising. "The progenitor and in the bone marrow began massively expanding and effectively turned the bone marrow into a megakaryocyte-making machine," Dr Ng said.

"Our findings support a theory whereby megakaryocytes and platelets control platelet numbers by 'mopping up' excess amounts of thrombopoietin in the bone marrow. In fact, we show this 'mopping up' action is absolutely essential in preventing blood disease where too many megakaryocytes and platelets are produced."

The findings may have implications for human disease, Dr Ng said. "We know people with myeloproliferative disorders, such as essential thrombocythemia, produce too many megakaryocytes and platelets," he said.

"Interestingly, previous studies have shown megakaryocytes and platelets in people with essential thrombocythemia have fewer Mpl receptors, which fits our model for excessive . By using genetic 'signatures',we were able to compare the blood progenitor cells responsible for overproducing in our model, to progenitor cells in people with essential thrombocythemia. We were able to show that in our model and in patients with essential thrombocythemia, had a signature of excessive thrombopoietin stimulation.

"We think this study now provides a comprehensive model of how thrombopoietin controls platelet production, and perhaps gives some insight into the biology and mechanism behind specific myeloproliferative disorders," Dr Ng said.

Explore further: Surprise finding redraws 'map' of blood cell production

More information: Mpl expression on megakaryocytes and platelets is dispensable for thrombopoiesis but essential to prevent myeloproliferation, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1404354111

Related Stories

Surprise finding redraws 'map' of blood cell production

January 31, 2012
A study of the cells that respond to crises in the blood system has yielded a few surprises, redrawing the 'map' of how blood cells are made in the body.

Modeling of congenital amegakaryocytic thrombocytopenia using iPS cell technology

August 1, 2013
A research group led by researcher Shinji Hirata and Professor Koji Eto at CiRA has conducted a study in which iPS cells generated from a patient with congenital amegakaryocytic thrombocytopenia (CAMT) were induced to differentiate ...

Discovery of novel regulators of the birth of blood platelets

October 7, 2013
EU research has led to a better understanding of the molecular mechanisms that make certain blood-producing cells function normally. The research will help prevent diseases that lead to heart attacks and strokes.

Discovery helps explain why chemo causes drop in platelet numbers

September 25, 2011
Scientists at the Walter and Eliza Hall Institute have identified a way that chemotherapy causes platelet numbers to drop, answering in the process a decade-old question about the formation of platelets, tiny cells that allow ...

Mice with human immune cells help researchers discover how the mosquito-borne virus depletes blood platelets

October 3, 2013
Dengue fever, an infectious tropical disease found in more than 100 countries, has no cure and no vaccine. One reason why it has been difficult to develop new drugs for dengue fever is that there are no good animal models ...

New stem cell method may eliminate need for blood donations to maintain platelet supply

February 13, 2014
Platelets, whose primary function is to prevent bleeding, are vital for treating various forms of trauma and blood diseases. However, they can only be obtained through blood donations at present. Researchers reporting online ...

Recommended for you

Image ordering often based on factors other than patient need: study

September 25, 2017
Do you really need that MRI?

Bone marrow concentrate improves joint transplants

September 25, 2017
Biologic joint restoration using donor tissue instead of traditional metal and plastic may be an option for active patients with joint defects. Although recovery from a biologic joint repair is typically longer than traditional ...

How ketogenic diets curb inflammation

September 25, 2017
Ketogenic diets – extreme low-carbohydrate, high-fat regimens that have long been known to benefit epilepsy and other neurological illnesses – may work by lowering inflammation in the brain, according to new research ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.