Newborns provide hope for spinal injuries

May 19, 2014 by Leigh Dayton
UTS researchers are experimenting with spinal chord tissue

(Medical Xpress)—It all started at a symposium five years ago. Catherine Gorrie, an expert in spinal cord injury, was listening to a presentation about the differences between the developing brains of children and the mature ones of adults when she had an "aah-haa" moment.

"I began to wonder if there is something in the spines of children that could be manipulated for repair," says Dr Gorrie, a neuroscientist at the University of Technology, Sydney (UTS). It made sense. Dr Gorrie already knew that the more adaptable, or "plastic", spinal cords of infants responded more efficiently to injury than did those of adults.

If she could tease out the factors that encouraged generic cells, so-called , in the spines of newborns to become new nerve cells, neurones, Dr Gorrie reasoned that it should be possible to mimic the process and help repair in people of all ages. That would be incredibly important because, to date, there is no cure for spinal cord injury and no proven drug treatment.

"The most effective treatments available involve the surgical stabilisation of the spinal column and extensive physical therapy to provide some functional improvement," Dr Gorrie says. "There is nothing else."

In Australia, about 10,000 people live with spinal cord injury and 300-400 new cases emerge every year. Most injuries are a result of car accidents, sporting activities or severe falls.

Childhood spinal cord injury is frequently the result of tumours that compress the spine, crushing neurones which transmit signals to and from the brain.

As the notion of exploiting the biomechanical properties of infant spinal cords took shape in her mind, Dr Gorrie pulled together a team of UTS researchers: Dr Matt Padula, Dr Hui Chen and doctoral students Thomas Cawsey and Yilin Mao.

If Dr Gorrie's team can work out how to encourage a type of stem cell already in the spinal cord to develop into neurones, they should be able to develop a treatment - one that can reduce the harm from new injuries or even reverse damage from long-standing ones - quickly and without invasive procedures.

That would be an important advance in the international quest for stem cell-based therapies for spinal cord injury. The reason is that most scientists work with other stem cells, for instance so-called . They must be collected from a patient's bone marrow, cartilage or fat, then developed into neurones in the laboratory and returned to the patient to stimulate regeneration of spinal cord function. Such transplants would take place months or years after an injury.

According to Dr Gorrie, neural progenitor cells (NP cells) could sidestep that process. In the brain they develop into three types of cells: neurones, oligodendrocytes and astrocytes. Oligodendrocytes support and insulate the long projections of neurones called axons. And astrocytes play a role in the repair and scaring process after traumatic injury.

The goal of Dr Gorrie's team's is to slow the activity of spinal cord astrocytes immediately after injury while simultaneously encouraging the formation of oligodendrocytes and also new neurons - a process not known to occur in the after birth.

It is early days, but the team is already making progress in experiments with animals and tissue culture.

"We are getting increased reaction of the NP cells to an injury," Dr Gorrie says. "The response happens very quickly after injury, within 24 hours," she says, adding that the team can spot the response by identifying a "marker" of NP cell activity called nestin, a type of protein.

Other international groups also work with NP cells but Dr Gorrie's "little team that could" is the first to focus on NP from young and old animals and to begin nailing down the timing of post-injury cell activity.

But there is a stumbling block - funding. Dr Gorrie's UTS Early Career grant concluded last year. "If there's anybody out there with a spare $10,000 to $20,000, give me a call," laughs Dr Gorrie. She's not kidding.

Explore further: Stem cell scarring aids recovery from spinal cord injury

Related Stories

Stem cell scarring aids recovery from spinal cord injury

October 31, 2013
In a new study, researchers at Karolinska Institutet in Sweden show that the scar tissue formed by stem cells after a spinal cord injury does not impair recovery; in fact, stem cell scarring confines the damage. The findings, ...

Evidence for spinal membrane as a source of stem cells may advance spinal cord treatment

October 28, 2011
Italian and Spanish scientists studying the use of stem cells for treating spinal cord injuries have provided the first evidence to show that meninges, the membrane which envelops the central nervous system, is a potential ...

Gene therapy improves limb function following spinal cord injury

April 1, 2014
Delivering a single injection of a scar-busting gene therapy to the spinal cord of rats following injury promotes the survival of nerve cells and improves hind limb function within weeks, according to a study published April ...

Patients with spinal cord injuries should be assessed for sleep apnea

January 15, 2014
A new study suggests that patients with spinal cord injuries could benefit from careful assessment for sleep apnea.

Spinal cord treatment offers hope

November 18, 2011
Queensland University of Technology (QUT) researchers have developed a promising new treatment for spinal cord injury in animals, which could eventually prevent paralysis in thousands of people worldwide every year.

Recommended for you

'Residual echo' of ancient humans in scans may hold clues to mental disorders

July 26, 2017
Researchers at the National Institute of Mental Health (NIMH) have produced the first direct evidence that parts of our brains implicated in mental disorders may be shaped by a "residual echo" from our ancient past. The more ...

Laser used to reawaken lost memories in mice with Alzheimer's disease

July 26, 2017
(Medical Xpress)—A team of researchers at Columbia University has found that applying a laser to the part of a mouse brain used for memory storage caused the mice to recall memories lost due to a mouse version of Alzheimer's ...

Cellular roots of anxiety identified

July 26, 2017
From students stressing over exams to workers facing possible layoffs, worrying about the future is a normal and universal experience. But when people's anticipation of bad things to come starts interfering with daily life, ...

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.