Researchers find novel approach to reactivate latent HIV

June 5, 2014
hiv
Scanning electron micrograph of an HIV-infected H9 T cell. Credit: NIAID

A team of scientists at the Gladstone Institutes has identified a new way to make latent HIV reveal itself, which could help overcome one of the biggest obstacles to finding a cure for HIV infection. They discovered that increasing the random activity, or noise, associated with HIV gene expression–without increasing the average level of gene expression–can reactivate latent HIV. Their findings were published today in the journal Science.

When HIV infects an immune cell, it inserts its genetic material into the DNA of the infected cell. In most cases, the immune cell's machinery makes copies of the viral genetic material, a process known as transcription. This eventually leads to the production–or expression–of all the components needed to make more viruses. The new viruses are released from the infected cell and spread the infection to other in the body.

In some cases, however, HIV expression goes into a holding pattern and the virus enters a latent state within the infected immune cell. This means that a small percentage of HIV hides in infected cells, beyond the reach of even the most potent drugs. As a result, we cannot completely eliminate HIV from the body, and people with HIV infection have to take antiretroviral drugs (ARVs) for the rest of their lives.

"Understanding how to reactivate latent HIV is one of the major challenges we must overcome in order to find a cure for HIV," said Leor Weinberger, PhD, Associate Investigator in the Gladstone Institute of Virology and Immunology and senior author of the study. Roy Dar, PhD, the lead author of the study, added, "If we can make the virus show itself, we can then use ARVs to eliminate it. This so-called 'shock and kill' approach holds great promise, but to date it has unfortunately shown only limited success."

One of the properties of latency that makes it so difficult to address is that it is random–or stochastic–in nature. Random fluctuations in transcription are unavoidable and a general aspect of life at the single-cell level and lead to "noise" around the average level of gene expression. HIV happens to have exceptionally noisy gene expression. Scientists have previously identified compounds that can reactivate HIV by activating transcription, but these compounds are not very effective, in part because of the noisiness of HIV transcription.

In this study, the team tested the counter-intuitive notion that compounds that increase noise in gene expression could work together with transcriptional activators to increase overall levels of HIV reactivation. The concept borrows from other fields of science such as chemistry, where theoretical arguments long ago argued that increased fluctuations can increase the efficiency of reactions.

First, they screened a library of 1,600 compounds using a specialized cell line that produces a green fluorescent protein (GFP) when gene expression is activated. The team identified 85 small molecules that increased noise without changing average GFP levels. They then combined these newly identified noise enhancers with known transcription activators in a cell line that serves as a model for HIV latency.

They found that while the noise enhancers could not cause reactivation on their own, 75 percent of them could synergize with activators and increase viral reactivation relative to activator alone. In fact, some noise enhancers doubled reactivation levels when combined with activators. Furthermore, they found a direct correlation between noise enhancement and the degree of reactivation synergy; the greater the noise, the greater the effect on reactivation. For the first time, these results show that expression noise and reactivation of latent HIV are directly related, and identify new candidates for the "shock and kill" approach to treating latent HIV infection.

Strategies to reverse HIV latency will likely require multiple rounds of treatment, and these new results suggest that noise-enhancing compounds may allow each round of treatment to be more effective at getting HIV to reveal itself. Additional screens for noise-enhancing activity may identify compounds that synergize with activators even better and are more efficient at reactivating the virus in order to eliminate it for good.

"The implications for using noise also extend far beyond HIV reactivation, since random cellular activity contributes to a wide range of processes, from antibiotic persistence to cancer metastasis", said Dr. Weinberger. "Thus, this approach could represent a new tool for drug discovery across multiple fields."

Explore further: Scientists uncover features of antibody-producing cells in people infected with HIV

More information: Paper: Screening for noise in gene expression identifies drug synergies, www.sciencemag.org/content/ear … 6/04/science.1250220

Related Stories

Scientists uncover features of antibody-producing cells in people infected with HIV

June 3, 2014
By analyzing the blood of almost 100 treated and untreated HIV-infected volunteers, a team of scientists has identified previously unknown characteristics of B cells in the context of HIV infection. B cells are the immune ...

Cancer drug shows promise in eradicating latent HIV infection

November 29, 2012
Breakthrough drugs have made it possible for people to live with HIV longer than ever before, but more work must be done to actually cure the disease. One of the challenges researchers face involves fully eradicating the ...

Drugs fail to reawaken dormant HIV infection

March 23, 2014
Scientists at Johns Hopkins report that compounds they hoped would "wake up" dormant reservoirs of HIV inside immune system T cells—a strategy designed to reverse latency and make the cells vulnerable to destruction—have ...

Scientists identify molecular signals that rouse dormant HIV infection

October 30, 2013
Perhaps the single greatest barrier to curbing the spread of HIV/AIDS is the dormant, or "latent," reservoir of virus, which is out of reach of even the most potent medications. But now, scientists at the Gladstone Institutes ...

Recommended for you

Scientists divulge latest in HIV prevention

July 25, 2017
A far cry from the 1990s "ABC" campaign promoting abstinence and monogamy as HIV protection, scientists reported on new approaches Tuesday allowing people to have all the safe sex they want.

Girl's HIV infection seems under control without AIDS drugs

July 24, 2017
A South African girl born with the AIDS virus has kept her infection suppressed for more than eight years after stopping anti-HIV medicines—more evidence that early treatment can occasionally cause a long remission that, ...

Meds by monthly injection might revolutionize HIV care (Update)

July 24, 2017
Getting a shot of medication to control HIV every month or two instead of having to take pills every day could transform the way the virus is kept at bay.

Candidate AIDS vaccine passes early test

July 24, 2017
The three-decade-old quest for an AIDS vaccine received a shot of hope Monday when developers announced that a prototype triggered the immune system in an early phase of human trials.

Paris spotlight on latest in AIDS science

July 21, 2017
Some 6,000 HIV experts gather in Paris from Sunday to report advances in AIDS science as fading hopes of finding a cure push research into new fields.

Scientists elicit broadly neutralizing antibodies to HIV in calves

July 20, 2017
Scientists supported by the National Institutes of Health have achieved a significant step forward, eliciting broadly neutralizing antibodies (bNAbs) to HIV by immunizing calves. The findings offer insights for HIV vaccine ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.