Deeper than ancestry.com, 'EvoCor' identifies gene relationships

June 3, 2014 by Ashley Wennersherron., Virginia Tech

A frontier lies deep within our cells. Our bodies are as vast as oceans and space, composed of a dizzying number of different types of cells. Exploration reaches far, yet the genes that make each cell and tissue unique have remained largely obscure.

That's changing with the help of a team led by Gregorio Valdez, an assistant professor at the Virginia Tech Carilion Research Institute.

Valdez and his team designed a search engine – called EvoCor – that identifies that are functionally linked.

The name, a portmanteau of "evolution" and "correlation," points to the idea that genes with a similar evolutionary history and expression pattern have evolved together to control a specific biological process.

The project, described in May in the journal Nucleic Acids Research, may help medical scientists find ways to treat diseases that often have a genetic component, such as cancer or Alzheimer's disease.

A scientist types the name of a gene into a search box, and EvoCor quickly sifts through the evolutionary history of all mapped genes – human and otherwise.

EvoCor then compares the expression pattern of all genes to generate a list of candidate genes that function together with the query gene to drive a cellular process – from generating more energy for the cell to clearing cellular debris. The scientist can use this list for the next stage of research.

"This platform allows researchers to generate lists of candidate genes quickly and at no cost," Valdez said. "EvoCor should speed the discovery of complex molecular mechanisms that control key cellular processes, including those that function to regenerate axons."

Most cellular functions—communication, division, death—result from a gene telling a cell how it's supposed to behave.

Scientists study how a gene is expressed and functions to determine, for example, eye color. The matter becomes more complicated when multiple genes with different functions are intricately related. Therein lies the problem. A researcher may start with one gene, but needs to know what other genes might play a part in influencing a particularly complex cellular function, such as the survival of neurons.

Once the other genes are known, the scientist can strategically study their function alone and as part of the larger network of genes.

To identify candidate genes, scientists have relied on expensive and time-consuming biochemical approaches. EvoCor takes advantage of the wealth of publicly available genome and datasets to generate a list of .

"It comes down to evolution," said James Dittmar, a fourth-year Virginia Tech Carilion School of Medicine student who is also a member of the Valdez laboratory and the first author of the journal article. "We took advantage of nearly 200 organisms with fully sequenced genomes to map out and compare the of all ."

Combing through the 21,000 human genes already mapped, 182 different genomes, and large gene expression datasets all maintained by the National Institutes of Health is a huge task. EvoCor makes it far more manageable.

"Scientists can now use EvoCor to take advantage of this massive amount of publicly available data to discover networks of genes without prior knowledge of their function," Valdez said.

When scientists fully understand every gene influencing a particular cellular output, they will have more options for developing therapeutics. In his own research, Valdez hopes to discover molecules that function to slow or halt cognitive and motor impairment caused by diseases and aging.

"We know of many genes that, when mutated, lead to disastrous outcomes," Valdez said. "But these genes don't function alone. EvoCor identifies functional partners and those partners could turn out to be better targets for therapeutics."

EvoCor was developed in collaboration with Lauren McIver, Pawel Michalak, and Harold "Skip" Garner, all scientists at the Virginia Bioinformatics Institute of Virginia Tech.

Valdez and his team plan to modify EvoCor further, so it can make even more powerful and specific predictions, easing the way for researchers trekking the new frontier.

Explore further: Worldwide gene mapping boosts leukaemia research

More information: W. James Dittmar, Lauren McIver, Pawel Michalak, Harold R. Garner, and Gregorio Valdez. "EvoCor: a platform for predicting functionally related genes using phylogenetic and expression profiles." Nucl. Acids Res. first published online May 21, 2014 DOI: 10.1093/nar/gku442

Related Stories

Worldwide gene mapping boosts leukaemia research

May 20, 2014
An international project has mapped for the first time the sets of genes used in virtually every cell in the human body, boosting the resources of WA leukaemia researchers.

Novel analyses improve identification of cancer-associated genes from microarray data

May 2, 2014
Dartmouth Institute for Quantitative Biomedical Sciences (iQBS) researchers developed a new gene expression analysis approach for identifying cancer genes. The paper entitled, "How to get the most from microarray data: advice ...

How breast cancer 'expresses itself'

May 29, 2014
About one in eight women in the United States will contract breast cancer in her lifetime. Now new research from Tel Aviv University-affiliated researchers, in collaboration with Johns Hopkins University, has provided another ...

Uncovering clues to the genetic cause of schizophrenia

May 28, 2014
The overall number and nature of mutations—rather than the presence of any single mutation—influences an individual's risk of developing schizophrenia, as well as its severity, according to a discovery by Columbia University ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.