Gene 'switch' reverses cancer in common childhood leukaemia model

June 17, 2014 by Liz Williams, Walter and Eliza Hall Institute of Medical Research
Gene ‘switch’ reverses cancer in common childhood leukaemia model
Ms Grace Liu (left) and Dr Ross Dickins have found that reactivating a gene called Pax5 could successfully treat leukaemia by helping cancerous cells to resume normal development.

(Medical Xpress)—Melbourne researchers have shown a type of leukaemia can be successfully 'reversed' by coaxing the cancer cells back into normal development.

The discovery was made using a model of B-progenitor acute lymphoblastic leukaemia (B-ALL), the most common cancer affecting children.

Researchers from the Walter and Eliza Hall Institute showed that switching off a gene called Pax5 could cause cancer in a model of B-ALL, while restoring its function could 'cure' the disease.

Institute researchers Dr Ross Dickins and Ms Grace Liu led the study with institute colleagues and collaborators in Vienna. The study was published today in the journal Genes & Development.

Ms Liu said the team used a newly developed 'genetic switch' technology to inhibit then reactivate Pax5 in the leukaemia model.

"Along with other genetic changes, deactivating Pax5 drives normal blood cells to turn into leukaemia cells, which has been shown before," Ms Liu said. "However we showed for the first time that reactivating Pax5 enabled the cells to resume their normal development and lose their cancer-like qualities, effectively curing the leukaemia. What was intriguing for us was that simply restoring Pax5 was enough to normalise these , despite the other genetic changes."

In leukaemia, immature replicate abnormally and build up in the bone marrow, interfering with production of normal blood cells.

Ms Liu said Pax5 was a gene frequently 'lost' in childhood B-ALL. "Pax5 is essential for normal development of a type of white blood cells called B cells," she said. "When Pax5 function is compromised, developing B cells can get trapped in an immature state and become cancerous. We have shown that restoring Pax5 function, even in cells that have already become cancerous, removes this 'block', and enables the cells to develop into normal white ."

Dr Dickins said the research shed light on the function of Pax5, which was one of about 100 genes known to 'suppress' human tumours. "When these tumour suppressor genes are inactivated by changes to the DNA, cancers start to develop," Dr Dickins said.

"This work shows how inactivating the tumour suppressor gene Pax5 contributes to B-ALL development and how leukaemia cells become 'addicted' to low Pax5 levels to continue proliferating. Even though the B-ALL cells have multiple genetic mutations, simply reactivating Pax5 causes tumour cells to resume normal development and lose their cancerous properties."

Dr Dickins said forcing B-ALL cells to resume their normal development could provide a new strategy for treating leukaemia. "While B-ALL has a relatively good prognosis compared with other cancers, current treatments can last years and have major side-effects. By understanding how specific genetic changes drive B-ALL, it may be possible to develop more specific treatments that act faster with fewer side-effects."

However Dr Dickins said that genes that are lost in tumour are not traditionally drug targets. "It is very difficult to develop drugs that restore the function of genes that are lost during cancer development," Dr Dickins said. "However by understanding the mechanisms by which Pax5 loss causes leukaemia, we can begin to look at ways of developing drugs that could have the same effect as restoring Pax5 function."

The genetic switch technology used to study Pax5 could also be used to understand 'tumour suppressor' genes in other cancers, he said.

Explore further: Researchers identify new protein linked to leukaemia growth

More information: Grace J. Liu, Luisa Cimmino, Julian G. Jude, Yifang Hu, Matthew T. Witkowski, Mark D. McKenzie, Mutlu Kartal-Kaess, Sarah A. Best, Laura Tuohey, Yang Liao, Wei Shi, Charles G. Mullighan, Michael A. Farrar, Stephen L. Nutt, Gordon K. Smyth, Johannes Zuber, and Ross A. Dickins. "Pax5 loss imposes a reversible differentiation block in B-progenitor acute lymphoblastic leukemia." Genes & Development, Jun 15, 2014; 28 (12)

Related Stories

Researchers identify new protein linked to leukaemia growth

May 16, 2014
(Medical Xpress)—Their work has identified a protein called PIP4K2A that could be a new target in drug development.

Rare, inherited mutation leaves children susceptible to acute lymphoblastic leukemia

October 15, 2013
(Medical Xpress)—Researchers have discovered the first inherited gene mutation linked exclusively to acute lymphoblastic leukemia (ALL) occurring in multiple relatives in individual families. The discovery of the PAX5 gene ...

Researchers uncover genetic cause of childhood leukemia

September 8, 2013
For the first time, a genetic link specific to risk of childhood leukemia has been identified, according to a team of researchers from Memorial Sloan-Kettering Cancer Center, St. Jude Children's Research Hospital, University ...

A molecular target may lead to drug to fight leukaemia

May 7, 2014
(Medical Xpress)—A molecular 'target' that could lead to a drug to fight leukaemia is in the sights of a team of University of Queensland researchers.

Worldwide gene mapping boosts leukaemia research

May 20, 2014
An international project has mapped for the first time the sets of genes used in virtually every cell in the human body, boosting the resources of WA leukaemia researchers.

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

SoylentGrin
not rated yet Jun 17, 2014
Holy cow, people. Why isn't this being broadcast as breaking news?
Am I misunderstanding the story?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.