Genomic 'dark matter' of embryonic lungs controls proper development of airways

June 18, 2014
The developing lung has similar expression patterns (red) of Nkx2-1 (bottom) and the novel long non-coding RNA NANCI (top), which promotes Nkx2-1 expression. Cell nuclei are stained blue. Credit: Michael Herriges, Perelman School of Medicine, University of Pennsylvania

It's a long way from DNA to RNA to protein, and only about two percent of a person's genome is eventually converted into proteins. In contrast, a much higher percentage of the genome is transcribed into RNA. What these non-protein-coding RNAs do is still relatively unknown. However, given their vast numbers in the human genome, researchers believe that they likely play important roles in normal human development and response to disease.

Large-scale sequencing has allowed investigators to identify thousands of non-coding RNAs. Small non-coding RNAs, including microRNAs, are known to be important players in regulating gene expression in many contexts, including tissue development. On the other hand, the function of long non-coding RNAs (lncRNAs) is less well understood.

Research led by Ed Morrisey, PhD, professor of Medicine and Cell and Developmental Biology in the Perelman School of Medicine, University of Pennsylvania and scientific director of the Penn Institute for Regenerative Medicine, has identified hundreds of these lncRNAs, sometimes called the "genomic dark matter," that are expressed in developing and adult lungs. Their findings, described in and featured on the cover of the current issue of Genes and Development, reveal that many of these lncRNAs in the regulate by opening and closing the DNA scaffolding on neighboring genes.

The team identified 363 long non-coding RNAs in the lung of the embryonic and adult mouse. They show that these lncRNAs are often located near transcription factors in the genome of lung cell lineages. "We have defined a new association of long non-coding RNAs with proteins called transcription factors that bind to specific DNA sequences and control cell identity and function," Morrisey says. "This association is important for lung development in mouse embryos, and at least for one of these long non-coding RNAs, important for human lung function."

Critical Pathways for Development, Disease

The team identified a lncRNA, called NANCI, that regulates the critical transcription factor Nkx2.1. This factor is the first lung molecular marker during mouse and and is essential for lungs to mature properly in an embryo.

NANCI appears to act upstream of Nkx2.1, but down-stream of Wnt signaling, a critical pathway for specifying cell type later in lung tissue development. Knockdown of NANCI expression during lung development leads to decreased Nkx2.1 expression and mimics the defects due to loss of a single copy of the Nkx2.1 gene, including decreased expression of surfactant proteins. These proteins aid in marking bacteria invading the lung for destruction by the immune system.

Importantly, patients with mutations in a single copy of NKX2.1 often have Brain-Lung-Thyroid Syndrome, which is characterized by respiratory distress after birth and accompanied by decreased surfactant protein expression. "There is also a report of a patient with a deletion in NANCI but not NKX2.1 who has Brain-Lung-Thyroid Syndrome, suggesting that mutations in NANCI and other lncRNAs can underlie human diseases," explains Morrisey.

In addition to NANCI, the team identified another lncRNA, which they named LL34, that regulates retinoic acid signaling, another important pathway for early lung development. LL34 is highly expressed in the early developing foregut, a region of the embryo that generates multiple tissue types, including lung, thyroid, and liver. Knockdown of LL34 expression leads to decreased retinoic acid signaling, suggesting that this lncRNA may play an early role in the development of the lung, as well as other tissues controlled by this pathway.

While other lncRNAs expressed in the lung, such as MALAT1, may primarily play a role in cancer progression, the data generated by the Morrisey lab provides unique insight into lncRNAs that regulate lung development. "We are hopeful that these new data provide the foundation for a better understanding of how the non-coding transcriptome regulates and also maintenance of adult tissues," says Morrisey.

Future work will be directed towards understanding how these lncRNAs control , as well as adult lung regeneration using both mouse and human model systems.

Explore further: Long non-coding RNA molecules necessary to regulate differentiation of embryonic stem cells into cardiac cells

Related Stories

Long non-coding RNA molecules necessary to regulate differentiation of embryonic stem cells into cardiac cells

January 25, 2013
When the human genome was sequenced, biologists were surprised to find that very little of the genome—less than 3 percent—corresponds to protein-coding genes. What, they wondered, was all the rest of that DNA doing?

Long non-coding RNA prevents the death of maturing red blood cells

December 7, 2011
A long non-coding RNA (lncRNA) regulates programmed cell death during one of the final stages of red blood cell differentiation, according to Whitehead Institute researchers. This is the first time a lncRNA has been found ...

Tweaking gene expression to repair lungs

February 25, 2013
A healthy lung has some capacity to regenerate itself like the liver. In COPD, these reparative mechanisms fail. HDAC therapies may be useful for COPD, as well as other airway diseases. The levels of HDAC2 expression and ...

RNA and protein molecules join forces to switch on gene networks responsible for brain development

December 19, 2013
Long noncoding RNAs (lncRNAs) are one of many RNA subtypes that do not give rise to protein but instead modulate the expression of other genes. Scientists are particularly interested in lncRNAs owing to their prominent role ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.