New research explains how we use the GPS inside our brain to navigate

June 5, 2014, Wellcome Trust
Credit: Rice University

The way we navigate from A to B is controlled by two brain regions which track the distance to our destination, according to new research funded by the Wellcome Trust and published in Current Biology.

The study found that at the beginning of a journey, one region of the brain calculates the straight-line to the destination ('the distance as a crow flies'), but during travel a different area of the brain computes the precise distance along the path to get there.

The findings pinpoint the precise brain regions used and in doing so change how scientists believed we use our brain to navigate. Previously, researchers had disagreed over whether the brain calculates a route or calculates the straight-line to a destination. By revealing that the brain does both this research indicates not only that both ideas were correct, but should also be integrated.

Dr Hugo Spiers and his team at UCL used film footage to recreate the busy streets of Soho in London (UK) inside an MRI scanner. Study participants were asked to navigate through the district, famous for its winding roads and complex junctions, whilst their brain activity was monitored. The researchers analysed brain activity during the different stages of the journey: setting course for the destination, keeping track of the destination while travelling, and decision making at street junctions.

The team found that activity in the , a region essential for navigation and memory, was sensitive to the straight-line distance to the destination when first working out how to get there. By contrast, during the rest of the journey, the posterior hippocampus, also famous for its role in navigation and memory, became active when keeping track of the path needed to reach the destination.

The results also reveal what happens in our brain when we use a Sat Nav or GPS to get to a destination. By recording when participants used Sat Nav-like instructions to reach their goal, the researchers found that neither of the tracked the distance to the destination and in general the brain was much less active.

Dr Spiers said: "Our team developed a new strategy for testing navigation and found that the way our brain directs our navigation is more complex than we imagined, calculating two types of distance in separate areas of the brain." He also commented on how the results might explain why London taxi drivers famously end up with an enlarged posterior hippocampus: "Our results indicate that it is the daily demand on processing paths in their posterior hippocampus that leads to the impressive expansion in their grey matter".

"These findings help us understand the mechanisms by which the hippocampus and entorhinal cortex guide navigation. The research is also a substantial step towards understanding how we use our in real world environments, of which we currently know very little."

Dr John Williams, head of clinical activities, neuroscience and mental health at the Wellcome Trust said: "These findings provide insight into the underlying biology of mental health conditions which affect our memory. The hippocampus and entorhinal cortex are among the first regions to be damaged in the dementia associated with Alzheimer's disease and these results provide some explanation as to why such patients struggle to find their way and become lost. Combining these findings with clinical work could enable medical benefits in the future."

Explore further: Neurons in the brain tune into different frequencies for different spatial memory tasks

More information: Howard LR, Javadi AH, Yu Y, Mill RD, Morrison LC, Knight R, Loftus MM, Laura Staskute L and Spiers HJ. Hippocampus and entorhinal cortex encode the path and Euclidean distance to goals during navigation. Current Biology. June 2014.

Related Stories

Neurons in the brain tune into different frequencies for different spatial memory tasks

April 17, 2014
Your brain transmits information about your current location and memories of past locations over the same neural pathways using different frequencies of a rhythmic electrical activity called gamma waves, report neuroscientists ...

A brake in the head: Researchers gain new insights into the working of the brain

September 19, 2013
Scientists of the Charité-Universitätsmedizin Berlin and the German Center for Neurodegenerative Diseases have managed to acquire new insights into the functioning of a region in the brain that normally is involved in spatial ...

New research shows memory is a dynamic and interactive process

May 28, 2014
Research presented by Morris Moscovitch, from the Rotman Research Institute at the University of Toronto, shows that memory is more dynamic and changeable than previously thought. Dr. Moscovich's results reveal that important ...

Brain structure shows who is most sensitive to pain

January 14, 2014
Everybody feels pain differently, and brain structure may hold the clue to these differences.

Brain imaging study reveals our brains 'divide and conquer'

July 18, 2013
University of Queensland (UQ) researchers have found human brains 'divide and conquer' when people learn to navigate around new environments.

Recommended for you

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.