New tumor-targeting agent images and treats wide variety of cancers

June 11, 2014, University of Wisconsin-Madison
Preferential cancer cell uptake of CLR1501. Fluorescence confocal microscopy illustrates that the fluorescent CLR1404 analogue, CLR1501, is selectively retained in three additional cancer types at 24 hours post treatment. Credit: Weichert et al., Science Translational Medicine 2014

Scientists at the University of Wisconsin Carbone Cancer Center (UWCCC) report that a new class of tumor-targeting agents can seek out and find dozens of solid tumors, even illuminating brain cancer stem cells that resist current treatments.

What's more, years of animal studies and early human clinical trials show that this tumor-targeting, alkylphosphocholine (APC) molecule can deliver two types of "payloads" directly to : a radioactive or fluorescent imaging label, or a radioactive medicine that binds and kills cancer cells.

The results are reported in today's issue of the journal Science Translational Medicine, and featured in the journal's cover illustration and podcast.

The APC targeting platform is a synthetic molecule that exploits a weakness common to cancers as diverse as breast, lung, brain and melanoma. These cancer cells lack the enzymes to metabolize phospholipid ethers, a cell membrane component that is easily cleared by normal cells. When given in an intravenous solution, APC goes throughout the body—even across the blood-brain barrier—and sticks to the membrane of cancer cells. The cancer cells take up the APC and the imaging or treatment medication riding on the molecular platform, and retain it for days to weeks, resulting in direct cancer cell imaging or treatment.

The APC analogs were able to tag 55 of 57 different cancers. This large study had multiple stages, including testing in cancer cell lines, in rodents and rodents infected with human and rodent cancers, and in human patients with different cancers such as breast, lung, colorectal and glioblastoma (brain cancer).

Virtual colonoscopy in rat model of colon cancer. Endoluminal fly-through of rat colon shows APC uptake by the malignant polyp (red) and absence of APC uptake in multiple other premalignant polyps. Credit: Weichert et al., Science Translational Medicine 2014

"I was a skeptic; it's almost too good to be true,'' says co-lead author Dr. John S. Kuo, associate professor of neurosurgery and director of the comprehensive brain tumor program at the UW School of Medicine and Public Health. "It is a very broad cancer-targeting agent in terms of the many different cancers that tested positive. The APC analogs even sometimes revealed other sites of cancer in patients that were small, asymptomatic and previously undetected by physicians."

Kuo specializes in the treatment of brain tumors, and also leads the UWCCC CNS Tumors group running many clinical trials for glioma, a that is incurable because current treatments leave behind cancer that can seed and regrow the cancer. He says it was encouraging that the APC analogs also picked up and will also likely target them for further treatment.

"It's also potentially superior to current imaging methods because the standard clinical MR or PET imaging may give false-positive results due to surgical scars, post-treatment effects, inflammation, or even infection, making it difficult to know if the cancer has truly returned,'' he says.

Kuo says the fluorescent intraoperative APC imaging might help make cancer surgeries more effective and safer; any cancer cells that cannot be safely removed can be targeted afterwards with radioactive APC therapy. In addition, APC imaging might avoid the "false positive" results of current imaging, so cancer patients can stay on effective therapies and likely avoid the risks and costs of "second look" surgeries.

The large multidisciplinary study team is also led by co-lead author Dr. Jamey P. Weichert, associate professor of radiology, who cofounded and serves as chief scientific officer of Cellectar Biosciences, Inc., the Madison-based company developing the APC analog platform for imaging and therapy.

Explore further: Molecular imaging finds novel way to knock down breast cancer

More information: "Alkylphosphocholine Analogs for Broad-Spectrum Cancer Imaging and Therapy," by J.P. Weichert et al. Science Translational Medicine, 2014. stm.sciencemag.org/lookup/doi/ … scitranslmed.3007646

Related Stories

Molecular imaging finds novel way to knock down breast cancer

June 9, 2014
For years researchers have been developing molecular imaging techniques that visualize hormonally active breast cancer cells—specifically those testing positive for human epidermal growth factor receptor 2 (HER2). A recent ...

Mammography has led to fewer late-stage breast cancers, study finds

June 10, 2014
In the last 30 years, since mammography was introduced, late-stage breast cancer incidence has decreased by 37 percent, a new study from the University of Michigan Comprehensive Cancer Center finds.

SapC-DOPS technology may help with imaging brain tumors, research shows

May 14, 2014
Just because you can't see something doesn't mean it's not there. Brain tumors are an extremely serious example of this and are not only difficult to treat—both adult and pediatric patients have a five-year survival rate ...

Herpes-loaded stem cells used to kill brain tumors

May 16, 2014
(Medical Xpress)—Harvard Stem Cell Institute (HSCI) scientists at Massachusetts General Hospital have a potential solution for how to more effectively kill tumor cells using cancer-killing viruses. The investigators report ...

Scientists discover how iron levels and a faulty gene cause bowel cancer

August 9, 2012
High levels of iron could raise the risk of bowel cancer by switching on a key pathway in people with faults in a critical anti-cancer gene, according to a study published in Cell Reports today.

Potential breast cancer drug performs well in early clinical trials

June 3, 2014
(Medical Xpress)—A drug previously studied to improve chemotherapy may be effective in treating patients with cancers related to the BRCA 1 or 2 genetic mutations, as well as patients with BRCA-like breast cancers, according ...

Recommended for you

Research team discovers drug compound that stops cancer cells from spreading

June 22, 2018
Fighting cancer means killing cancer cells. However, oncologists know that it's also important to halt the movement of cancer cells before they spread throughout the body. New research, published today in the journal Nature ...

Dying cancer cells make remaining glioblastoma cells more aggressive and therapy-resistant

June 21, 2018
A surprising form of cell-to-cell communication in glioblastoma promotes global changes in recipient cells, including aggressiveness, motility, and resistance to radiation or chemotherapy.

Existing treatment could be used for common 'untreatable' form of lung cancer

June 21, 2018
A cancer treatment already approved for use in certain types of cancer has been found to block cell growth in a common form of lung cancer for which there is currently no specific treatment available.

Novel therapy makes oxidative stress deadly to cancer

June 21, 2018
Oxidative stress can help tumors thrive, but one way novel cancer treatments work is by pushing levels to the point where it instead helps them die, scientists report.

Higher body fat linked to lower breast cancer risk in younger women

June 21, 2018
While obesity has been shown to increase breast cancer risk in postmenopausal women, a large-scale study co-led by a University of North Carolina Lineberger Comprehensive Cancer Center researcher found the opposite is true ...

Researchers uncover new target to stop cancer growth

June 21, 2018
Researchers at the University of Wisconsin-Madison have discovered that a protein called Munc13-4 helps cancer cells secrete large numbers of exosomes—tiny, membrane-bound packages containing proteins and RNAs that stimulate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.