New technique maps life's effects on our DNA

July 20, 2014

Researchers at the BBSRC-funded Babraham Institute, in collaboration with the Wellcome Trust Sanger Institute Single Cell Genomics Centre, have developed a powerful new single-cell technique to help investigate how the environment affects our development and the traits we inherit from our parents. The technique can be used to map all of the 'epigenetic marks' on the DNA within a single cell. This single-cell approach will boost understanding of embryonic development, could enhance clinical applications like cancer therapy and fertility treatments, and has the potential to reduce the number of mice currently needed for this research.

'Epigenetic marks' are chemical tags or proteins that mark DNA and act as a kind of cellular memory. They do not change the DNA sequence but record a cell's experiences onto the DNA, which allows cells to remember an experience long after it has faded. Placing these tags is part of normal ; they tell genes whether to be switched on or off and so can determine how the cell develops. Different sets of active genes make a skin cell different from a brain cell, for example. However, environmental cues such as diet can also alter where epigenetic tags are laid down on DNA and influence an organism's long-term health.

Dr Gavin Kelsey, from the Babraham Institute, said: "The ability to capture the full map of these epigenetic marks from individual cells will be critical for a full understanding of early , cancer progression and aid the development of stem cell therapies.

"Epigenetics research has mostly been reliant on using the mouse as a model organism to study early development. Our new single-cell method gives us an unprecedented ability to study epigenetic processes in human , which has been restricted by the very limited amount of tissue available for analysis."

The research, published in Nature Methods, offers a new single-cell technique capable of analysing DNA methylation – one of the key epigenetic marks – across the whole genome. The method treats the cellular DNA with a chemical called bisulphite. Treated DNA is then amplified and read on high-throughput sequencing machines to show up the location of methylation marks and the genes being affected.

These analyses will help to define how in individual cells during early development drive cell fate. Current methods observe epigenetic marks in multiple, pooled cells. This can obscure modifications taking place in individual cells at a time in development when each cell has the potential to form in a unique way. The new method has already revealed that many of the methylation marks that differ between are precisely located in sites that control gene activity.

Dr Gavin Kelsey, said: "Our work provides a proof-of-principle that large-scale, single-cell epigenetic analysis is achievable to help us understand how epigenetic changes control embryonic development. The application of single-cell approaches to epigenetic understanding goes far beyond basic biological research. Future clinical applications could include the analysis of individual cancer cells to provide clinicians with the information to tailor treatments, and improvements in fertility treatment by understanding the potential for epigenetic errors in assisted reproduction technologies."

Explore further: Homing in on developmental epigenetics

More information: Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity, Nature Methods, dx.doi.org/10.1038/nmeth.3035

Related Stories

Homing in on developmental epigenetics

August 23, 2013
Germ cells have unique molecular features that enable them to perform the important task of transmitting genetic information to the next generation. During development from their embryonic primordial state, germ cells are ...

BUSM researchers study epigenetic mechanisms of tumor metastasis for improved cancer therapy

October 30, 2013
A review article by researchers at Boston University School of Medicine (BUSM) suggests that epigenetics may be a useful target to stop the growth, spread and relapse of cancer. The findings are published online in Volume ...

Deciphering the cellular reading system of DNA methylation

April 12, 2013
(Medical Xpress)—Scientists from the FMI identify how a family of proteins reads the methylation marks on the DNA so critical for cell development. These MBD proteins bind directly to methylation marks and inactivate the ...

Research reveals the mechanisms that guide the fate of individual embryonic cells

February 26, 2014
The fusion of a sperm and egg yields a zygote with an unconstrained capacity to develop into any cell type in the body. Subsequent rounds of cell division limit those options as the embryo enters a developmental program that ...

Epigenetic reprogramming: Research discovers how epigenetic information could be inherited

January 24, 2013
New research reveals a potential way for how parents' experiences could be passed to their offspring's genes. The research was published today, 25 January, in the journal Science.

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
not rated yet Jul 21, 2014
Life's effects on our DNA are nutrient-dependent and pheromone-controlled. The epigenetic landscape is linked to the physical landscape of DNA via conserved molecular mechanisms in species from microbes to man. Amino acid substitutions differentiate cell types based on the thremodynamics of intercellular signaling that enables organism-level thermoregulation.

Nutrient-dependent pheromone-controlled ecological adaptations: from atoms to ecosystems
http://figshare.c...s/994281

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.