Understanding how wounds heal, helping those with chronic wounds heal faster

July 16, 2014 by Erin Vollick

You fall and scrape your knee. After cleaning the wound, you plaster a bandage over it and presto! In two to three days, your injury is nothing but a memory.

But what really just happened – how did your wound actually heal?

Using a student-designed software program called MEDUSA, a special type of and a tool called fluorescent tagging, a group of researchers from the University of Toronto's Institute of Biomaterials & Biomedical Engineering (IBBME) has been studying just that.

And they think they've uncovered how some of the fastest wound healers around – the embryos of fruit flies – get the job done, with the hope of translating some of these findings into medical therapies.

In a typical embryonic wound, a cable-like, cellular structure slowly draws in on itself, eventually closing off the wound in much the same way that a string bag closes. Second-year PhD candidate Teresa Zulueta-Coarasa, the first author in a study published in the journal Development, examined this behaviour in "normal' and "mutant" fruit fly embryos. The goal: to measure how quickly wounds heal over time and what mechanisms lie behind healing.

It's an incredibly laborious process. To determine the rate of healing in a single embryo, researchers measure the wound area on each and every frame of a film captured by confocal microscopy. Typically, this involves drawing a polygon shape on the borders of the wound onto hundreds of film images.

Credit: Rob Patrick via Flickr

To speed the process of discovery, Zulueta-Coarasa developed the MEDUSA software program. The program employs algorithms to automatically find the borders of the wound in a single time frame of film. The resulting contour is then transferred onto the adjacent time frames and fitted to the individual images, making the analysis process for these large amounts of data far more efficient.

To sleuth out the mechanisms behind healing, the team employed fluorescently-tagged proteins. Molecules that tended to gather around the wound edges increased in intensity, allowing the researchers to identify specific molecules involved in the . (See MEDUSA image at right.)

"We found that for certain proteins, the intensity of the molecule in the wound margin increased rapidly, [suggesting that] those molecules are important to the wound healing process," said Zulueta-Coarasa.

The findings may one day play an important role for those suffering from diabetes or other circulation-related illnesses.

"Patients with chronic wounds heal really slowly or not at all," explained Zulueta-Coarasa, "but if we could understand why wounds heal so fast in these [fly] embryos we could develop a strategy to heal them."

But what surprised the researchers is that the study may have uncovered a parallel between wound healing and the metastasis of certain cancers.

One of the proteins the researchers saw double in intensity around the wound is called Abelson kinase, or Abl. According to Zulueta-Coarasa, "We have been able to discover that, in mutant embryos without that molecule, still heal – but at a much slower rate."

Abl, though, is a molecule more commonly associated with metastatic cancers.

"From a biomedical perspective," explained IBBME Assistant Professor Rodrigo Fernandez-Gonzalez, corresponding author on the paper, "the identification of a role for the protein Abl in coordinated cell migration [during ] generates new hypotheses about its role in metastasis."

"Abl activation is associated with invasive breast cancer, in which small groups of cells can coordinate their migratory behaviours to spread disease," he added.

Though intriguing, the connection between the molecule's role in speeding up the healing process and spreading cancer remains a mystery. "The actual mechanisms by which Abl promotes metastasis are unclear," said Fernandez-Gonzalez.

Explore further: Understanding aspirin's effect on wound healing offers hope for treating chronic wounds

Related Stories

Understanding aspirin's effect on wound healing offers hope for treating chronic wounds

May 12, 2014
In addition to its known capacity to promote bleeding events, aspirin also inhibits wound healing. New research published in The Journal of Experimental Medicine now describes how aspirin acts on key skin cells called keratinocytes, ...

Scarless wound healing—applying lessons learned from fetal stem cells

April 10, 2014
In early fetal development, skin wounds undergo regeneration and healing without scar formation. This mechanism of wound healing later disappears, but by studying the fetal stem cells capable of this scarless wound healing, ...

New finding may help accelerate diabetic wound healing

October 30, 2013
University of Notre Dame researchers have, for the first time, identified the enzymes that are detrimental to diabetic wound healing and those that are beneficial to repair the wound.

Promising role for interleukin-10 in scarless wound healing

May 8, 2014
The powerful anti-inflammatory compound interleukin-10 (IL-10) plays a crucial role in regenerative, scarless healing of fetal skin. Studies of IL-10 in postnatal skin wounds have demonstrated its promise as an anti-scarring ...

Breakthrough research discovery to help heal chronic wounds

December 14, 2012
(Medical Xpress)—The University of Queensland researchers have successfully restored wound healing in a model of diabetes paving the way for new treatments for chronic wounds.

Recommended for you

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.