New finding may aid recovery from spinal cord injury

August 5, 2014

Researchers in the Vanderbilt University Institute of Imaging Science (VUIIS) have achieved the first conclusive non-invasive measurement of neural signaling in the spinal cords of healthy human volunteers.

Their technique, described today in the journal eLife, may aid efforts to help patients recover from injuries and other disorders affecting spinal cord function, including multiple sclerosis.

"We definitely hope that this work can be translated to address many neurological disorders," said the paper's first author, Robert Barry, Ph.D., a postdoctoral research fellow in the institute directed by senior author John Gore, Ph.D.

The researchers used ultra-high field functional magnetic resonance imaging (fMRI) to detect for the first time "resting state" signals between neural circuits in the human spinal column. These signals are continuously active, not in response to external stimuli.

"We see these background resting circuits as being inherent measures of function," said Gore, the Hertha Ramsey Cress Professor of Medicine, University Professor and vice chair of Research in the Department of Radiology and Radiological Sciences.

The technique may be valuable for understanding how spinal cord injury changes the "functional connectivity" between neural circuits, for example, and for assessing and monitoring recovery that occurs spontaneously or following various interventions.

"The hope is that when you have impaired function that there will be changes (in the signals)," Gore said. "We've already got evidence for that from other studies."

Studies of the "resting" brain reveal how coordinate to control various functions and to produce different behaviors. The spinal cord has been more difficult to study because it is much smaller than the brain, and conventional fMRI isn't sensitive enough to pick up its signals.

The Vanderbilt team overcame this challenge by using an fMRI scanner with a 7 Tesla magnet, multichannel spinal cord coils, and advanced methods for acquiring and analyzing the images. One Tesla is roughly 20,000 times the strength of the magnetic field of the earth.

Explore further: Isolating the circuits that control voluntary movement

Related Stories

Isolating the circuits that control voluntary movement

May 7, 2014
(Medical Xpress)—Extraordinarily complex networks of circuits that transmit signals from the brain to the spinal cord control voluntary movements. Researchers have been challenged to identify the controlling circuits, but ...

Restoring paretic hand function via an artificial neural connection bridging spinal cord injury

April 11, 2013
Functional loss of limb control in individuals with spinal cord injury or stroke can be caused by interruption of the neural pathways between brain and spinal cord, although the neural circuits located above and below the ...

New study taps into genetics of spinal pain

July 16, 2014
Pain researchers at the University of Adelaide have launched a new study to investigate the underlying reasons why some sufferers of spinal injury have persistent pain and others don't.

Getting a grip on hand function: Researchers discover spinal cord circuit that controls our ability to grasp

April 10, 2013
Dalhousie neurosurgeon and scientist Dr. Rob Brownstone and postdoctoral fellow Dr. Tuan Bui have identified the spinal cord circuit that controls the hand's ability to grasp. This breakthrough finding opens the door to the ...

Scientists uncover new clues to repairing injured spinal cord

August 5, 2014
Frogs, dogs, whales, snails can all do it, but humans and primates can't. Regrow nerves after an injury, that is—while many animals have this ability, humans don't. But new research from the Salk Institute suggests that ...

Researcher focuses on the repair of spinal cords

November 11, 2013
A spinal cord injury can be a devastating condition, often resulting in life-long disability and a range of secondary complications.

Recommended for you

Common antiseptic ingredients de-energize cells and impair hormone response

August 22, 2017
A new in-vitro study by University of California, Davis, researchers indicates that quaternary ammonium compounds, or "quats," used as antimicrobial agents in common household products inhibit mitochondria, the powerhouses ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.