Scientists uncover new clues to repairing injured spinal cord

August 5, 2014
Salk scientists uncover new clues to repairing an injured spinal cord
The presence of p45 (green staining) and p75 (red staining) indicates that motor neurons increase both p45 and p75 expression after sciatic nerve injury in an animal. Credit: Salk Institute for Biological Studies

Frogs, dogs, whales, snails can all do it, but humans and primates can't. Regrow nerves after an injury, that is—while many animals have this ability, humans don't. But new research from the Salk Institute suggests that a small molecule may be able to convince damaged nerves to grow and effectively rewire circuits. Such a feat could eventually lead to therapies for the thousands of Americans with severe spinal cord injuries and paralysis.

"This research implies that we might be able to mimic neuronal repair processes that occur naturally in lower animals, which would be very exciting," says the study's senior author and Salk professor Kuo-Fen Lee. The results were published in PLOS Biology.

For a damaged nerve to regain function, its long, signal-transmitting extensions known as axons need to grow and establish new connections to other cells.

In a study published last summer in PLOS ONE, Lee and his colleagues found that the protein p45 promotes by preventing the axon sheath (known as myelin) from inhibiting regrowth. However, humans, primates and some other more advanced vertebrates don't have p45. Instead, the researchers discovered a different protein, p75, that binds to the axon's myelin when occurs in these animals. Instead of promoting nerve regeneration, p75 actually halts growth in damaged nerves.

"We don't know why this nerve regeneration doesn't occur in humans. We can speculate that the brain has so many neural connections that this regeneration is not absolutely necessary," Lee says.

In the new study, the scientists looked at how two p75 proteins bind together and form a pair that latches onto the inhibitors released from damaged myelin.

By studying the configurations of the proteins in solutions using (NMR) technology, the researchers found that the growth-promoting p45 could disrupt the p75 pairing.

"For reasons that are not understood, when p45 comes in, it breaks the pair apart," says Lee, holder of the Helen McLoraine Chair in Molecular Neurobiology.

What's more, the p45 protein was able to bind to the specific region in the p75 protein that is critical for the formation of the p75 pair, thus decreasing the amount of p75 pairs that bond to inhibitors release from myelin. With less p75 pairs available to bond to inhibitor signals, axons were able to regrow.

The findings suggest that an agent—either p45 or another disrupting molecule—that can effectively break the p75 pair could offer a possible therapy for .

One method of therapy could be to introduce more p45 protein to injured neurons, but a smarter tactic might be to introduce a small molecule that jams the link between the two p75 proteins, Lee says. "Such an agent could possibly get through the blood-brain barrier and to the site of ," he says.

The next step will be to see if introducing p45 helps regenerate damaged human nerves. "That is what we hope to do in the future," Lee says.

Explore further: Scientist discovers novel mechanism in spinal cord injury

Related Stories

Scientist discovers novel mechanism in spinal cord injury

July 25, 2013
More than 11,000 Americans suffer spinal cord injuries each year, and since over a quarter of those injuries are due to falls, the number is likely to rise as the population ages. The reason so many of those injuries are ...

Glial cells assist in the repair of injured nerves

January 28, 2013
When a nerve is damaged, glial cells produce the protein neuregulin1 and thereby promote the regeneration of nerve tissue.

Study sheds light on nerve regeneration following spinal cord injury

November 21, 2013
Fish, unlike humans, can regenerate nerve connections and recover normal mobility following an injury to their spinal cord. Now, University of Missouri researchers have discovered how the sea lamprey, an eel-like fish, regrows ...

New discovery gives hope that nerves could be repaired after spinal cord injury

April 1, 2014
A new discovery suggests it could one day be possible to chemically reprogram and repair damaged nerves after spinal cord injury or brain trauma.

First oral drug for spinal cord injury improves movement in mice

January 8, 2013
An experimental oral drug given to mice after a spinal cord injury was effective at improving limb movement after the injury, a new study shows.

Recommended for you

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

New method to measure how drugs interact

October 17, 2017
Cancer, HIV and tuberculosis are among the many serious diseases that are frequently treated with combinations of three or more drugs, over months or even years. Developing the most effective therapies for such diseases requires ...

Research finds that zinc binding is vital for regulating pH levels in the brain

October 17, 2017
Researchers in Oslo, Norway, have discovered that zinc binding plays an important role in the sensing and regulation of pH in the human brain. The findings come as one of the first studies that directly link zinc binding ...

Researchers find factor that delays wound healing

October 17, 2017
New research carried out at The University of Manchester has identified a bacterium—normally present on the skin that causes poor wound healing in certain conditions.

Childhood poverty, poor support may drive up pregnant woman's biological age

October 16, 2017
Pregnant women who had low socioeconomic status during childhood and who have poor family social support appear to prematurely age on a cellular level, potentially raising the risk for complications, a new study has found.

Chronic inflammation plays critical role in sustained delivery of new muscular dystrophy therapy

October 16, 2017
Macrophages, a type of white blood cell involved in inflammation, readily take up a newly approved medication for Duchenne muscular dystrophy (DMD) and promote its sustained delivery to regenerating muscle fibers long after ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

dollymop
not rated yet Aug 06, 2014
humans are primates.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.