Are three brain imaging techniques better than one?

August 22, 2014 by Michael Price, San Diego State University
Some of Müller's previous studies have shown that there's more "crosstalk" between brain regions in children with Autism.

(Medical Xpress)—Many recent imaging studies have shown that in children with autism, different parts of the brain do not connect with each other in typical ways. Initially, most researchers thought that the autistic brain has fewer connections between key regions. The most recent studies, however, point to an opposite conclusion: The brains of people with autism exhibit overconnectivity.

To date, almost all studies of in children have used a single imaging technique to explore connectivity. None has been able to capture a robust picture of the brain abnormalities associated with autism—until now.

Two new grants from the National Institute of Mental Health (NIMH) will allow San Diego State University Psychology Professor Ralph-Axel Müller to combine three and harness the best of each one in his study of autism.

Techniques in tandem

Although the term "brain imaging" gets thrown around a lot when describing the latest advances in neuroscience and psychology, there are dozens of different brain imaging techniques. Each gives scientists a different view of the inner workings of the brain, and each comes with its own strengths and limitations.

For example, the frequently cited technique of fMRI, or functional magnetic resonance imaging, measures blood flow in different areas of the brain at specific snapshots in time, based on the knowledge that increased blood flow indicates increased activity of nerve cells in that area of the brain. The technique is powerful, but has limitations when it comes to detecting dynamic changes in that occur very fast, within milliseconds.

EEG (electroencephalography), a much older technique, is actually better at detecting such dynamic changes, although it cannot pinpoint exactly where in the brain the activity occurs. A powerful and more recent technique is MEG, or magnetoencephalography, which can detect dynamic changes in brain activity that happen within a few milliseconds.

Müller looks for disorganized patterns of brain activity that could be responsible for some of the telltale characteristics of , such as inattention to social cues and repetitive and obsessive behaviors. For example, last year, Müller and his colleagues discovered that in children with autism, connectivity was impaired between the cerebral cortex and the thalamus, a deep brain structure that is important for sensorimotor functions and attention.

With $4.2 million in new funding from NIH, Müller—together with collaborators Ksenija Marinkovic at SDSU and Thomas Liu at the University of California, San Diego—will apply fMRI, EEG, and MEG to study both autistic and non-autistic, or typically-developing, children and adolescents during a variety of tests, including language tests designed to tease out activity in various .

Defining the differences

One component of the project will concern the visual system. Previous research has shown that people with autism rely on their visual cortex more than typically- developing people during thought processes, for example, when making a semantic distinction, such as deciding whether a truck is a vehicle. Using the one-two punch of fMRI and MEG together, Müller and his team will be able to determine the dynamic processes in how brain regions work together to come up with a response, and how these processes differ in autism.

The study will also examine brain function during its resting state in order to identify abnormalities in brain network organization. The combined use of EEG and MEG, together with fMRI techniques that reveal brain anatomy, will produce a much more complete picture of abnormal brain organization in autism.

Ultimately, Müller and his colleagues hope to identify biomarkers in the brain that can reliably indicate whether the participant falls on the autism spectrum.

"Autism is a brain-based disorder, but its diagnosis is still based entirely on behavioral observation," Müller said. "This is inadequate. We need to find brain biomarkers for autism."

Another goal of the researchers is to find brain biomarkers that can distinguish different subtypes of autism. It is generally suspected that the term "autism" actually covers several different disorders, each of which may be caused by different genetic and environmental risk factors. Eventually, brain biomarkers might be tied to genetic data, giving scientists a better understanding of the origins of autism, as well as new leads for treatment.

"For decades, research teams studying autism have specialized in one or another scientific technique, often without understanding well what other techniques can reveal. Our study combining several of the major imaging techniques will be one step toward a more comprehensive account of how the autistic differs from the typically developing one – and what may be done about it," Müller said.

Explore further: Autism in children affects not only social abilities, but also broad range of sensory and motor skills

Related Stories

Autism in children affects not only social abilities, but also broad range of sensory and motor skills

June 25, 2013
A group of investigators from San Diego State University's Brain Development Imaging Laboratory are shedding a new light on the effects of autism on the brain.

Autistic brain less flexible at taking on tasks, study shows

July 29, 2014
The brains of children with autism are relatively inflexible at switching from rest to task performance, according to a new brain-imaging study from the Stanford University School of Medicine.

Social symptoms in autistic children may be caused by hyper-connected neurons

November 7, 2013
The brains of children with autism show more connections than the brains of typically developing children do. What's more, the brains of individuals with the most severe social symptoms are also the most hyper-connected. ...

Overhaul of our understanding of why autism potentially occurs

August 12, 2014
An analysis of autism research covering genetics, brain imaging, and cognition led by Laurent Mottron of the University of Montreal has overhauled our understanding of why autism potentially occurs, develops and results in ...

Team finds age-related changes in how autism affects the brain

March 13, 2013
Newly released findings from Bradley Hospital published in the Journal of the American Academy of Child & Adolescent Psychiatry have found that autism spectrum disorders (ASD) affect the brain activity of children and adults ...

New mouse model may open autism treatment research avenues

July 30, 2014
The hallmark of an excellent researcher is an open mind. That flexibility and openness is what led Nina Schor, M.D., Ph.D., the William H. Eilinger Chair of Pediatrics at the University of Rochester, to follow a hunch about ...

Recommended for you

Nearly imperceptible fluctuations in movement correspond to autism diagnoses

January 17, 2018
A new study led by researchers at Indiana University and Rutgers University provides the strongest evidence yet that nearly imperceptible changes in how people move can be used to diagnose neurodevelopmental disorders, including ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Being bilingual may help autistic children

January 16, 2018
Children with Autism Spectrum Disorders (ASD) often have a hard time switching gears from one task to another. But being bilingual may actually make it a bit easier for them to do so, according to a new study which was recently ...

No rise in autism in US in past three years: study

January 2, 2018
After more than a decade of steady increases in the rate of children diagnosed with autism in the United States, the rate has plateaued in the past three years, researchers said Tuesday.

Autism therapy: Brain stimulation restores social behavior in mice

December 13, 2017
Scientists are examining the feasibility of treating autistic children with neuromodulation after a new study showed social impairments can be corrected by brain stimulation.

Social phobia linked to autism and schizophrenia

December 11, 2017
New Swinburne research shows that people who find social situations difficult tend to have similar brain responses to those with schizophrenia or autism.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.