New insight on why people with Down syndrome invariably develop Alzheimer's disease

October 23, 2014, Sanford-Burnham Medical Research Institute
Amyloid plaques are found in the brains of people with Down syndrome and Alzheimer's disease. Credit: Juan Gartner

A new study by researchers at Sanford-Burnham Medical Research Institute reveals the process that leads to changes in the brains of individuals with Down syndrome—the same changes that cause dementia in Alzheimer's patients. The findings, published in Cell Reports, have important implications for the development of treatments that can prevent damage in neuronal connectivity and brain function in Down syndrome and other neurodevelopmental and neurodegenerative conditions, including Alzheimer's disease.

Down syndrome is characterized by an extra copy of chromosome 21 and is the most common chromosome abnormality in humans. It occurs in about one per 700 babies in the United States, and is associated with a mild to moderate intellectual disability. Down syndrome is also associated with an increased risk of developing Alzheimer's disease. By the age of 40, nearly 100 percent of all individuals with Down syndrome develop the changes in the brain associated with Alzheimer's disease, and approximately 25 percent of people with Down syndrome show signs of Alzheimer's-type dementia by the age of 35, and 75 percent by age 65. As the life expectancy for people with Down syndrome has increased dramatically in recent years—from 25 in 1983 to 60 today—research aimed to understand the cause of conditions that affect their quality of life are essential.

"Our goal is to understand how the extra copy of chromosome 21 and its genes cause individuals with Down syndrome to have a greatly increased risk of developing dementia," said Huaxi Hu, Ph.D., professor in the Degenerative Diseases Program at Sanford-Burnham and senior author of the paper. "Our new study reveals how a protein called sorting nexin 27 (SNX27) regulates the generation of beta-amyloid—the main component of the detrimental amyloid plaques found in the brains of people with Down syndrome and Alzheimer's. The findings are important because they explain how beta-amyloid levels are managed in these individuals."

Beta-Amyloid, Plaques and Dementia

Xu's team found that SNX27 regulates beta-amyloid generation. Beta-amyloid is a sticky protein that's toxic to neurons. The combination of beta-amyloid and dead neurons form clumps in the brain called plaques. Brain plaques are a pathological hallmark of Alzheimer's disease and are implicated in the cause of the symptoms of dementia.

"We found that SNX27 reduces beta-amyloid generation through interactions with gamma-secretase—an enzyme that cleaves the beta-amyloid precursor protein to produce beta-amyloid," said Xin Wang, Ph.D., a postdoctoral fellow in Xu's lab and first author of the publication. "When SNX27 interacts with gamma-secretase, the enzyme becomes disabled and cannot produce beta-amyloid. Lower levels of SNX27 lead to increased levels of functional gamma-secretase that in turn lead to increased levels of beta-amyloid."

SNX27's Role in Brain Function

Previously, Xu and colleagues found that SNX27 deficient mice shared some characteristics with Down syndrome, and that humans with Down syndrome have significantly lower levels of SNX27. In the brain, SNX27 maintains certain receptors on the cell surface—receptors that are necessary for neurons to fire properly. When levels of SNX27 are reduced, neuron activity is impaired, causing problems with learning and memory. Importantly, the research team found that by adding new copies of the SNX27 gene to the brains of Down syndrome mice, they could repair the memory deficit in the mice.

The researchers went on to reveal how lower levels of SNX27 in Down syndrome are the result of an extra copy of an RNA molecule encoded by chromosome 21 called miRNA-155. miRNA-155 is a small piece of genetic material that doesn't code for protein, but instead influences the production of SNX27.

With the current study, researchers can piece the entire process together—the extra copy of chromosome 21 causes elevated levels of miRNA-155 that in turn lead to reduced levels of SNX27. Reduced levels of SNX27 lead to an increase in the amount of active gamma-secretase causing an increase in the production of beta-amyloid and the plaques observed in affected individuals.

"We have defined a rather complex mechanism that explains how SNX27 levels indirectly lead to beta-amyloid," said Xu. "While there may be many factors that contribute to Alzheimer's characteristics in Down syndrome, our study supports an approach of inhibiting gamma-secretase as a means to prevent the amyloid plaques in the brain found in Down syndrome and Alzheimer's."

"Our next step is to develop and implement a screening test to identify molecules that can reduce the levels of miRNA-155 and hence restore the level of SNX27, and find molecules that can enhance the interaction between SNX27 and gamma-secretase. We are working with the Conrad Prebys Center for Chemical Genomics at Sanford-Burnham to achieve this," added Xu.

Explore further: Researchers unravel molecular roots of Down syndrome

Related Stories

Researchers unravel molecular roots of Down syndrome

March 24, 2013
Sanford-Burnham researchers discover that the extra chromosome inherited in Down syndrome impairs learning and memory because it leads to low levels of SNX27 protein in the brain.

Contributions of a 'sorting nexin' protein to learning impairments in Down's syndrome

April 23, 2014
Every year, roughly 1 in 1,000 children worldwide are born with Down's syndrome. This developmental disorder, associated with potentially severe intellectual and learning disabilities among other characteristics, is caused ...

Protein that causes frontotemporal dementia also implicated in Alzheimer's disease

September 29, 2014
Researchers at the Gladstone Institutes have shown that low levels of the protein progranulin in the brain can increase the formation of amyloid-beta plaques (a hallmark of Alzheimer's disease), cause neuroinflammation, and ...

Scientists discover protein's role in human memory and learning functions

February 19, 2014
Scientists at A*STAR's Institute of Molecular and Cell Biology (IMCB) have identified the precise role of the protein, SNX27, in the pathway leading to memory and learning impairment. The study broadens the understanding ...

Down syndrome helps researchers understand Alzheimer's disease

September 18, 2014
The link between a protein typically associated with Alzheimer's disease and its impact on memory and cognition may not be as clear as once thought, according to a new study from the University of Wisconsin-Madison's Waisman ...

Further potential insight into the complex neuropathology of Down's syndrome

April 8, 2013
(Medical Xpress)—Researchers at the University of Bristol have revealed new insight into the function of a key protein attributed to impaired learning and memory in Down's syndrome. The findings, published online in Nature ...

Recommended for you

Genes linked to Alzheimer's contribute to damage in different ways

June 12, 2018
Multiple genes are implicated in Alzheimer's disease. Some are linked to early-onset Alzheimer's, a condition that develops in one's 30s, 40s and 50s, while others are associated with the more common late-onset form of the ...

Researchers reverse cognitive impairments in mice with dementia

June 8, 2018
Reversing memory deficits and impairments in spatial learning is a major goal in the field of dementia research. A lack of knowledge about cellular pathways critical to the development of dementia, however, has stood in the ...

As mystery deepens over the cause of Alzheimer's, researchers seek new answers

June 6, 2018
For more than 20 years, much of the leading research on Alzheimer's disease has been guided by the "amyloid hypothesis."

Research reveals how Tau aggregates can contribute to cell death in Alzheimer's disease

June 5, 2018
New evidence suggests a mechanism by which progressive accumulation of Tau protein in brain cells may lead to Alzheimer's disease. Scientists studied more than 600 human brains and fruit fly models of Alzheimer's disease ...

How does alcohol influence the development of Alzheimer's disease?

June 4, 2018
Research from the University of Illinois at Chicago has found that some of the genes affected by alcohol and inflammation are also implicated in processes that clear amyloid beta—the protein that forms globs of plaques ...

Dementia patients could remain at home longer thanks to ground breaking technology

June 4, 2018
Innovative new technology will enable people with dementia to receive round the clock observation and live independently in their own homes, a new study in the Journal PLOS One reports.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

GrannyStormCrow
not rated yet Oct 23, 2014
"THC blocks an enzyme called acetylcholinesterase, which speeds the formation of amyloid plaque in the brains of people with Alzheimer's disease. The Alzheimer's drugs Aricept and Cognex work by blocking acetylcholinesterase. When tested at double the concentration of THC, Aricept blocked plaque formation only 22% as well as THC, and Cognex blocked plaque formation only 7% as well as THC." WebMD- "Marijuana May Slow Alzheimer's".

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.