Viewing cancer on the move: New device yields close-up look at metastasis

October 31, 2014, Johns Hopkins University
This dish houses a lab chip that Johns Hopkins engineers built to gain an unprecedented close-up view of how cancer cells enter the bloodstream to spread the disease. Credit: Will Kirk/Johns Hopkins University

Johns Hopkins engineers have invented a lab device to give cancer researchers an unprecedented microscopic look at metastasis, the complex way that tumor cells spread through the body, causing more than 90 percent of cancer-related deaths. By shedding light on precisely how tumor cells travel, the device could uncover new ways to keep cancer in check.

The inventors, from the university's Whiting School of Engineering and its Institute for NanoBioTechnology (INBT), published details and images from their new system recently in the journal Cancer Research. Their article reported on successful tests that captured video of human as they burrowed through reconstituted body tissue material and made their way into an artificial blood vessel.

"There's still so much we don't know about exactly how migrate through the body, partly because, even using our best imaging technology, we haven't been able to see precisely how these individual cells move into blood vessels," said Andrew D. Wong, a Department of Materials Science and Engineering doctoral student who was lead author of the journal article. "Our new tool gives us a clearer, close-up look at this process."

With this novel lab platform, Wong said, the researchers were able to record video of the movement of individual cancer cells as they crawled through a three-dimensional collagen matrix. This material resembles the human tissue that surrounds tumors when cancer cells break away and try to relocate elsewhere in the body. This process is called invasion.

Wong also collected video of single cancer cells prying and pushing their way through the wall of an artificial vessel lined with , the same kind that line human blood vessels. By entering the bloodstream through this process, called intravasion, cancer cells are able to hitch a ride to other parts of the body and begin to form deadly new tumors.

Tiny tubes connected to the chip carry a fluid that behaves like the bloodstream, allowing the Johns Hopkins researchers to study how metastasis occurs. Credit: Will Kirk/Johns Hopkins University

To view these important early stages of metastasis, Wong replicated these processes in a small transparent chip that incorporates the artificial blood vessel and the surrounding tissue material. A nutrient-rich solution flows through the artificial vessel, mimicking the properties of blood. The breast cancer cells, inserted individually and in clusters in the tissue near the vessel, are labeled with fluorescent tags, enabling their behavior to be seen, tracked and recorded via a microscopic viewing system.

Wong's doctoral advisor, Peter Searson, the Joseph R. and Lynn C. Reynolds Professor of Materials Science and Engineering and director of the INBT, said his graduate student took on this challenging project nearly five years ago—and ultimately produced impressive results.

"Andrew was able to build a functional artificial blood vessel and a microenvironment that lets us capture the details of the metastatic process," said Searson, who was the corresponding author of the Cancer Research article and is a member of the Johns Hopkins Kimmel Cancer Center. "In the past, it's been virtually impossible to see the steps involved in this process with this level of clarity. We've taken a significant leap forward."

This improved view should give cancer researchers a much clearer look at the complex physical and biochemical interplay that takes place when cells leave a tumor, move through the surrounding tissue and approach a blood vessel. For example, the new lab device enabled the inventors to see detailed images of a cancer cell as it found a weak spot in the vessel wall, exerted pressure on it and squeezed through far enough so that the force of the passing current swept it into the circulating fluid.

"Cancer cells would have a tough time leaving the original tumor site if it weren't for their ability to enter our bloodstream and gain access to distant sites," Wong said. "So it's actually the entry of into the bloodstream that allows the cancer to spread very quickly."

Knowing more about this process could unearth a key to thwarting metastasis.

"This device allows us to look at the major steps of metastasis as well as to test different treatment strategies at a relatively fast pace," Wong said. "If we can find a way to stop one of these steps in the metastatic cascade, we may be able to find a new strategy to slow down or even stop the spread of cancer."

Next, the researchers plan to use the device to try out various cancer-fighting drugs within this device to get a better look at how the medications perform and how they might be improved.

The new lab device to study metastasis is protected by a provisional patent obtained through the Johns Hopkins Technology Transfer office.

Explore further: Tumor blood vessel protein provides potential therapeutic target

More information: The Cancer Research journal article can be viewed at:
cancerres.aacrjournals.org/content/74/17/4937.full

Related Stories

Tumor blood vessel protein provides potential therapeutic target

August 27, 2014
Tumor blood vessels supply oxygen and nutrients to cancer cells and provide access to other organs. While tumor vasculature shares many features with normal vessels, their unique characteristics are potential therapeutic ...

How metastases develop in the liver

October 14, 2014
In order to invade healthy tissue, tumor cells must leave the actual tumor and enter the bloodstream or lymphatic system. For this purpose, they use certain enzymes, proteases that break down the tissue surrounding the tumor, ...

Malaria medicine chloroquine inhibits tumor growth and metastases

August 11, 2014
A recent study by investigators at VIB and KU Leuven has demonstrated that chloroquine also normalizes the abnormal blood vessels in tumors. This blood vessel normalization results in an increased barrier function on the ...

Study reveals mechanisms cancer cells use to establish metastatic brain tumors

February 27, 2014
New research from Memorial Sloan Kettering provides fresh insight into the biologic mechanisms that individual cancer cells use to metastasize to the brain. Published in the February 27 issue of Cell, the study found that ...

Recommended for you

Pregnant? Eating broccoli sprouts may reduce child's chances of breast cancer later in life

August 16, 2018
Researchers at the University of Alabama at Birmingham have found that a plant-based diet is more effective in preventing breast cancer later in life for the child if the mother consumed broccoli while pregnant. The 2018 ...

PARP inhibitor improves progression-free survival in patients with advanced breast cancers

August 15, 2018
In a randomized, Phase III trial led by researchers at The University of Texas MD Anderson Cancer Center, the PARP inhibitor talazoparib extended progression-free survival (PFS) and improved quality-of-life measures over ...

Scientists discover chemical which can kill glioblastoma cells

August 15, 2018
Aggressive brain tumour cells taken from patients self-destructed after being exposed to a chemical in laboratory tests, researchers have shown.

Three scientists share $500,000 prize for work on cancer therapy

August 15, 2018
Tumors once considered untreatable have disappeared and people previously given months to live are surviving for decades thanks to new therapies emerging from the work of three scientists chosen to receive a $500,000 medical ...

New clues into how 'trash bag of the cell' traps and seals off waste

August 15, 2018
The mechanics behind how an important process within the cell traps material before recycling it has puzzled scientists for years. But Penn State researchers have gained new insight into how this process seals off waste, ...

RUNX proteins act as regulators in DNA repair, study finds

August 15, 2018
A study by researchers from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore has revealed that RUNX proteins are integral to efficient DNA repair via the Fanconi Anemia (FA) ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.