Migration negation: Blocking a receptor may combat cancer metastasis

November 6, 2014, Harvard Medical School
Migration negation
Like a transformer surge that makes birds on a wire take flight, new research has found that the receptor Frizzled-2 can induce cancer cells to migrate. Credit: O'Reilly Science Art

Most cancer deaths occur because of metastasis, yet progress in preventing and treating migratory cancer cells has been slow.

"It's been particularly challenging to design drugs that work against ," said Taran Gujral, research fellow in at Harvard Medical School.

"Unfortunately, many cancers aren't detected until after they've already metastasized."

Gujral and colleagues have now identified a cellular culprit that should help researchers better understand how metastasis begins. Their findings may also inform the design of new treatments to combat it.

As reported Nov. 6 in Cell, the team discovered that an overabundance of a cell receptor called Frizzled-2, along with its activator, Wnt5, appears to raise a tumor's likelihood of metastasizing by triggering a process known as the epithelial-mesenchymal transition, or EMT.

EMT normally plays a role in human development, allowing certain cells to become mobile and invasive so they can move around and form new structures in the growing embryo. Previous studies have linked EMT to , where tumor cells acquire those properties to disastrous effect. The question has been: How exactly does that happen?

"This study makes big headway on an extremely important medical problem: what makes one type of tumor metastasize and another type not," said Marc Kirschner, John Franklin Enders University Professor of Systems Biology at HMS, chair of the Department of Systems Biology and co-senior author of the paper.

"On a basic biology level, it also reports the unexpected discovery of a brand-new cell signaling pathway," Kirschner added.

After learning the importance of Frizzled-2, the researchers developed an antibody to block it. The antibody curbed metastasis in mice with certain types of tumors.

The researchers are now pursuing further studies of the antibody with the hope that it can one day be turned into a metastasis-fighting drug.

"Discovering that Frizzled-2 and Wnt5 play a causal role in EMT and metastasis is directly actionable," said co-senior author Gavin MacBeath, lecturer in systems biology at HMS and senior vice president at Merrimack Pharmaceuticals.

"Frizzled-2 provides a promising new therapeutic target to prevent or delay metastasis, and both Frizzled-2 and Wnt5 are potential biomarkers that can be used to identify which patients are most at risk of metastasis and could benefit from Frizzled-2-directed therapy," MacBeath said.

The study also illuminates an important biological process and may contribute to better predictions of metastasis likelihood and patient survival.

Researchers had known that cell signaling pathways activated by the Wnt ("wint") protein family influence EMT, but they weren't sure how. First author Gujral and his colleagues examined various Wnt signals, and the Frizzled family of receptors they bind to, in many cancer cell lines.

They found that Wnt5 and its receptor, Frizzled-2, were present at higher than normal levels in metastatic liver, breast, lung and colon cancer cell lines. In tissue samples from 48 cancer patients, Frizzled-2 was higher in late-stage cancers than in early-stage cancers. And patients with late-stage liver cancer who had high levels of Frizzled-2 had lower survival rates.

The team then painstakingly pieced together the players linking Wnt5 with the onset of metastatic behavior and discovered a previously unknown Wnt pathway. Frizzled-2, it turned out, could activate STAT3, which is known to drive cancer through EMT.

In addition to exploring Frizzled-2 as a new drug target, a potential biomarker for metastasis and a possible addition to the factors that predict patient survival, next steps include nailing down other pathway players to gain a full understanding of EMT in cancer and beyond.

"Although it will take time to determine whether this discovery can be translated into a novel therapeutic option for patients, I am very excited about the potential," said MacBeath. "Significant advances in combating must come from new approaches, and developing precision therapeutics that prevent metastasis provides a promising and different way to fight this devastating disease."

Explore further: How a tumor suppressor helps control changes in cell shape and motility that are central to metastasis

Related Stories

How a tumor suppressor helps control changes in cell shape and motility that are central to metastasis

October 26, 2014
Ludwig Oxford researchers have discovered a key mechanism that governs how cells of the epithelia, the soft lining of inner body cavities, shift between a rigid, highly structured and immobile state and a flexible and motile ...

New breast cancer stem cell findings explain how cancer spreads

January 14, 2014
Breast cancer stem cells exist in two different states and each state plays a role in how cancer spreads, according to an international collaboration of researchers. Their finding sheds new light on the process that makes ...

Decoding the emergence of metastatic cancer stem cells

October 31, 2014
In the first study of its kind, Rice University researchers have mapped how information flows through the genetic circuits that cause cancer cells to become metastatic. The research reveals a common pattern in the decision-making ...

Cancer researchers identify new metastasis suppressor gene

July 14, 2014
(Medical Xpress)—Among patients with deadly cancers, more than 90 percent die because of metastatic spread of their disease. Looking to target a key pathway in order to interfere with the processes that lead to tumor spread, ...

Wound healing response promotes breast cancer metastasis in postpartum mice

September 24, 2014
Within the first 5 years after the birth of a child, women are at an increased risk of developing metastatic breast cancer. Women diagnosed with postpartum breast cancer have a decreased disease free survival time compared ...

Study helps resolve debate about how tumors spread

November 29, 2012
A team of scientists, led by researchers at the University of California, San Diego School of Medicine, has shown for the first time how cancer cells control the ON/OFF switch of a program used by developing embryos to effectively ...

Recommended for you

Targeting the engine room of the cancer cell

June 18, 2018
Researchers at Columbia University Irving Medical Center (CUIMC) have developed a highly innovative computational framework that can support personalized cancer treatment by matching individual tumors with the drugs or drug ...

Study suggests well-known growth suppressor actually fuels lethal brain cancers

June 18, 2018
Scientists report finding a potentially promising treatment target for aggressive and deadly high-grade brain cancers like glioblastoma. But they also say the current lack of a drug that hits the molecular target keeps it ...

Researchers create novel combination as potential therapy for high-risk neuroblastoma

June 18, 2018
Researchers at VCU Massey Cancer Center in Richmond, Virginia, have identified a promising target to reverse the development of high-risk neuroblastoma and potentially inform the creation of novel combination therapies for ...

Genomics offers new treatment options for infants with range of soft tissue tumors

June 18, 2018
The genetic causes of a group of related infant cancers have been discovered by scientists at the Wellcome Sanger Institute, the University of Wuerzburg and their collaborators. Whole genome sequencing of tumours revealed ...

Standard myelofibrosis drug can awaken 'dormant' lymphoma

June 18, 2018
Most patients with myelofibrosis, a rare chronic disorder of the haematopoietic cells of the bone marrow, benefit from drugs from the JAK2 inhibitor class: symptoms are relieved, survival extended and general quality-of-life ...

Breast cancer researcher warns against online genetic tests

June 18, 2018
We have never been so fascinated by the secrets inside our cells.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.