Decoding the emergence of metastatic cancer stem cells

October 31, 2014
This is an artist's depiction of the dangers of metastasis, the process by which cancer cells migrate and establish tumors throughout the body. A new Rice University-led study has revealed a common pattern in the decision-making circuitry that cancer cells use to initiate both migration and new tumor formation. Credit: thinkstockphotos.com/Rice University

In the first study of its kind, Rice University researchers have mapped how information flows through the genetic circuits that cause cancer cells to become metastatic. The research reveals a common pattern in the decision-making that allows cancer cells to both migrate and form new tumors. Researchers say the commonality may open the door to new drugs that interfere with the genetic switches that cancer must flip to form both cancer stem cells and circulating tumor cells—two of the main players in cancer metastasis.

"Cells have genetic circuits that are used to switch certain behaviors on and off," said biophysicist Eshel Ben-Jacob, a senior investigator at Rice's Center for Theoretical Biological Physics and co-author of a new study in the Journal of the Royal Society Interface. "Though some of the circuits for metastasis have been mapped, this is the first study to examine how cancer uses two of those circuits, in concert, to produce not just , but also dangerous packs of hybrid stem-like-cells that travel in groups to colonize other parts of the body."

Metastasis—the spread of cancer between organs—causes more than 90 percent of cancer deaths, but not all tumor cells can metastasize. The switch that many cancer cells use to become metastatic is the circuit that governs the epithelial-to-mesenchymal transition, or EMT. The EMT, an important feature in embryonic development and wound healing, allows cells to revert back along their developmental path and take on certain stem-like features that allow them to form new tissues and repair tissue damage.

Cancer cells co-opt the EMT process to allow tumor cells to break away and migrate to other parts of the body. Once there, the cells reverse the switch and transition back to to form a new colony.

In 2013, Ben-Jacob and Rice colleagues José Onuchic, Herbert Levine, Mingyang Lu and Mohit Kumar Jolly discovered that cancer uses the EMT circuitry as a three-way switch. Rather than simply flipping between the epithelial (E) and mesenchymal (M) states, the study showed that cancer had the ability to form E-M hybrids.

In the new study, Ben-Jacob, Levine, Jolly and Lu teamed with Rice graduate student Bin Huang and the University of Texas MD Anderson Cancer Center's Sendurai Mani to examine the interaction between the three-way EMT switch and a second, well-documented genetic switch that gives rise to cancer (CSCs). The research showed that the CSC circuit also operates as a three-way switch. In addition, the study found "significant correspondence" between the operation of the two switches, which suggests a mechanism that would confer "stemness" on hybrid E-M cancer cells that are known to travel in packs called circulating (CTCs).

"According to the prevailing cancer dogma, cells that become fully mesenchymal pose the highest risk of metastasis progression," said Ben-Jacob, adjunct professor of biosciences at Rice. "Indeed, most diagnostic and therapeutic efforts to date have focused on targeting these cells. Notwithstanding that the hybrid cells are more versatile and have the advantage of moving together as a group, they have been assumed to be less harmful than their fully mesenchymal cousins. Our discovery—that squads of hybrid also have 'stemness' characteristics—challenges this picture."

Jolly, the study's first author, said, "By applying a physics-based approach to understand the dynamics of cancer decision-making, we were able to explain a number of recent experimental observations, including some that seemed contradictory."

Mani, who first showed in 2008 that the EMT switch could produce cells with stem-like properties, said, "Being stem-like means that cells can easily differentiate back to epithelial as well as change their character to found a whole colony of specialist cells that work together. The finding of 'stemness' in E-M hybrids means that those cells will have a better chance to form metastases because they can more easily adapt to newly encountered conditions and become E easily at the metastasic niche in a distant organ."

Levine, co-director of Rice's Center for Theoretical Biological Physics, said the coupling between the two switches shows that two seemingly independent and distinct cellular programs—one that drives migration and a second that drives adaptation and tumorigenesis—are linked.

"The existence of a link suggests that we may be able to simultaneously target both processes with innovative new therapies," he said.

Levine said the new study validates the center's research approach, which relies on a combination of skills from both the physical sciences and biology.

"It is also an excellent example of what can happen thanks to the center's symbiotic efforts with world-class research partners in the Texas Medical Center," Levine said.

Explore further: How a tumor suppressor helps control changes in cell shape and motility that are central to metastasis

More information: Interface: rsif.royalsocietypublishing.or … 01/20140962.abstract

Related Stories

How a tumor suppressor helps control changes in cell shape and motility that are central to metastasis

October 26, 2014
Ludwig Oxford researchers have discovered a key mechanism that governs how cells of the epithelia, the soft lining of inner body cavities, shift between a rigid, highly structured and immobile state and a flexible and motile ...

Physicists decode decision circuit of cancer metastasis

October 24, 2013
Cancer researchers from Rice University have deciphered the operating principles of a genetic switch that cancer cells use to decide when to metastasize and invade other parts of the body. The study found that the on-off ...

New breast cancer stem cell findings explain how cancer spreads

January 14, 2014
Breast cancer stem cells exist in two different states and each state plays a role in how cancer spreads, according to an international collaboration of researchers. Their finding sheds new light on the process that makes ...

Researchers prove mathematical models can predict cellular processes

October 28, 2014
How does a normal cellular process derail and become unhealthy? A multi-institutional, international team led by Virginia Tech researchers studied cells found in breast and other types of connective tissue and discovered ...

Scientists trigger self-destruct switch in lung cancer cells

October 31, 2014
Cancer Research UK scientists have found a drug combination that can trigger the self-destruct process in lung cancer cells - paving the way for new treatments, according to research that will be presented at the National ...

Protein ZEB1 promotes breast tumor resistance to radiation therapy

August 4, 2014
Twist, Snail, Slug. They may sound like words in a children's nursery rhyme, but they are actually the exotic names given to proteins that can generate cells with stem cell-like properties that have the ability to form diverse ...

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
not rated yet Nov 04, 2014
http://www.telegr...ead.html

"Most of us don't worry about these questions most of the time. But almost all of us must sometimes wonder: Why are we here? Where do we come from? Traditionally, these are questions for philosophy, but philosophy is dead," he said. "Philosophers have not kept up with modern developments in science. Particularly physics."

Most physicists have not kept up with modern developments in the chemistry of protein folding and the conserved molecular mechanisms of biology that link the epigenetic landscape to the physical landscape of DNA in organized genomes.

That's why they tout ridiculous theories.

Thank God Eshel Ben-Jacob is not an evolutionary theorist or a philosopher who retards scientific progress by touting beliefs instead of supporting biological facts with experimental evidence.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.